C#排序算法的比较
C#排序算法的比较
C#排序算法的比较
首先通过图表比较不同排序算法的时间复杂度和稳定性。
排序方法 |
平均时间 |
最坏情况 |
最好情况 |
辅助空间 |
稳定性 |
直接插入排序 |
O(n2) |
O(n2) |
O(n) |
O(1) |
是 |
冒泡排序 |
O(n2) |
O(n2) |
O(n) |
O(1) |
是 |
简单选择排序 |
O(n2) |
O(n2) |
O(n2) |
O(1) |
是 |
希尔排序 | - |
O(nlog2n)~O(n2) |
O(nlog2n)~O(n2) |
O(1) |
否 |
快速排序 |
O(nlog2n) |
O(n2) |
O(nlog2n) |
O(log2n) |
否 |
堆排序 |
O(nlog2n) |
O(nlog2n) |
O(nlog2n) |
O(1) |
否 |
2-路归并排序 |
O(nlog2n) |
O(nlog2n) |
O(nlog2n) |
O(n) |
是 |
基数排序 | O(d(n + rd)) | O(d(n + rd)) | O(d(n + rd)) | O(rd) | 是 |
注:1. 算法的时间复杂度一般情况下指最坏情况下的渐近时间复杂度。
下面通过C#代码说明不同的排序算法
插入排序
时间复杂度:平均情况—O(n2) 最坏情况—O(n2) 辅助空间:O(1) 稳定性:稳定
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。
void InsertSort(SqList &L) {
// 对顺序表L作直接插入排序。
int i,j;
for (i=2; i<=L.length; ++i)
if (LT(L.r[i].key, L.r[i-1].key)) {
// "<"时,需将L.r[i]插入有序子表
L.r[0] = L.r[i]; // 复制为哨兵
for (j=i-1; LT(L.r[0].key, L.r[j].key); --j)
L.r[j+1] = L.r[j]; // 记录后移
L.r[j+1] = L.r[0]; // 插入到正确位置
}
} // InsertSort
希尔排序(shell)
时间复杂度:理想情况—O(nlog2n) 最坏情况—O(n2) 稳定性:不稳定
希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小,插入排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比o(n^2)好一些。由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
void ShellInsert(SqList &L, int dk) {
// 对顺序表L作一趟希尔插入排序。本算法对算法10.1作了以下修改:
// 1. 前后记录位置的增量是dk,而不是1;
// 2. r[0]只是暂存单元,不是哨兵。当j<=0时,插入位置已找到。
int i,j;
for (i=dk+1; i<=L.length; ++i)
if (LT(L.r[i].key, L.r[i-dk].key)) { // 需将L.r[i]插入有序增量子表
L.r[0] = L.r[i]; // 暂存在L.r[0]
for (j=i-dk; j>0 && LT(L.r[0].key, L.r[j].key); j-=dk)
L.r[j+dk] = L.r[j]; // 记录后移,查找插入位置
L.r[j+dk] = L.r[0]; // 插入
}
} // ShellInsert
void ShellSort(SqList &L, int dlta[], int t) {
// 按增量序列dlta[0..t-1]对顺序表L作希尔排序。
for (int k=0;k<t;k++)
ShellInsert(L, dlta[k]); // 一趟增量为dlta[k]的插入排序
} // ShellSort
冒泡排序
时间复杂度:平均情况—O(n2) 最坏情况—O(n2) 辅助空间:O(1) 稳定性:稳定
冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
void BubbleSort(SeqList R) {
int i,j;
Boolean exchange; //交换标志
for(i=1;i<n;i++){ exchange="FALSE;" j="n-1;j">=i;j--) //对当前无序区R[i..n]自下向上扫描
if(R[j+1].key< R[j].key){//交换记录
R[0]=R[j+1]; //R[0]不是哨兵,仅做暂存单元
R[j+1]=R[j];
R[j]=R[0];
exchange=TRUE; //发生了交换,故将交换标志置为真
}
if(!exchange) //本趟排序未发生交换,提前终止算法
return;
} //endfor(外循环)
}
快速排序
时间复杂度:平均情况—O(nlog2n) 最坏情况—O(n2) 辅助空间:O(log2n) 稳定性:不稳定
快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],其中center_index是中枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走,当a[j] > a[center_index]。如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。 交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 8 9 10 11, 现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j]交换的时刻。
int Partition(SqList &L, int low, int high) {
// 交换顺序表L中子序列L.r[low..high]的记录,使枢轴记录到位,
// 并返回其所在位置,此时,在它之前(后)的记录均不大(小)于它
KeyType pivotkey;
RedType temp;
pivotkey = L.r[low].key; // 用子表的第一个记录作枢轴记录
while (low < high) { // 从表的两端交替地向中间扫描
while (low < high && L.r[high].key>=pivotkey) --high;
temp=L.r[low];
L.r[low]=L.r[high];
L.r[high]=temp; // 将比枢轴记录小的记录交换到低端
while (low < high && L.r[low].key < =pivotkey) ++low;
temp=L.r[low];
L.r[low]=L.r[high];
L.r[high]=temp; // 将比枢轴记录大的记录交换到高端
}
return low; // 返回枢轴所在位置
} // Partition
void QSort(SqList &L, int low, int high) {
// 对顺序表L中的子序列L.r[low..high]进行快速排序
int pivotloc;
if (low < high) { // 长度大于1
pivotloc = Partition(L, low, high); // 将L.r[low..high]一分为二
QSort(L, low, pivotloc-1); // 对低子表递归排序,pivotloc是枢轴位置
QSort(L, pivotloc+1, high); // 对高子表递归排序
}
} // QSort
void QuickSort(SqList &L) {
// 对顺序表L进行快速排序
QSort(L, 1, L.length);
} // QuickSort
选择排序
时间复杂度:平均情况—O(n2) 最坏情况—O(n2) 辅助空间:O(1) 稳定性:不稳定
选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9, 我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
void SelectSort(SqList &L) {
// 对顺序表L作简单选择排序。
int i,j;
for (i=1; i < L.length; ++i) { // 选择第i小的记录,并交换到位
j = SelectMinKey(L, i); // 在L.r[i..L.length]中选择key最小的记录
if (i!=j) { // L.r[i]←→L.r[j]; 与第i个记录交换
RedType temp;
temp=L.r[i];
L.r[i]=L.r[j];
L.r[j]=temp;
}
}
} // SelectSort
堆排序
时间复杂度:平均情况—O(nlog2n) 最坏情况—O(nlog2n) 辅助空间:O(1) 稳定性:不稳定
我们知道堆的结构是节点i的孩子为2*i和2*i+1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n/2-1, n/2-2, ...1这些个父节点选
- C#如何获取真实IP地址
- C# File类的操作
- C#压缩图片不失真
- 安装C# Windows服务需要“设置服务登录”
- C#中is 运算符与as运算符的区别和作用
- C# Task实现多线程
- C#类的访问修饰符
- C#中string.format的格式和用法
- C#操作datatable
- c# 注册表操作
- C#中的深拷贝与浅拷贝的区别
- C#中Dictionary的用法
- C#预处理器指令
- C#中hashtable 的使用方法
- c#中使用stopwatch统计代码执行时间
- js中encodeURIComponent与C#中HttpUtility.UrlEncode
- 2021款起亚霸锐到店了 更换车标,竞争宝马X5有戏吗(2021款起亚霸锐到店了)
- 新款起亚霸锐实拍,比普拉多气派,配3.0T V6,引入国内或许能大卖(新款起亚霸锐实拍)
- ()
- 张勇 阿里新任掌门人(阿里新任掌门人)
- 毛戈平全国第一柜花落银泰 高端国货迎来 高光 时刻(毛戈平全国第一柜花落银泰)
- 14岁丧父 20岁丧母,从苦难走向辉煌的银泰创始人沈国军(14岁丧父20岁丧母从苦难走向辉煌的银泰创始人沈国军)
热门推荐
- vue3.0安装element(vue3+electron12+dll开发客户端配置详解)
- linux用nvm安装nodejs(nodejs管理工具nvm安装过程详解)
- dedecms如何更改文章发布时间(Dedecms实现自动统计当前栏目文档总数的方法)
- MVC中报get_RazorKeywords()错误的解决方法
- 基于pythonopencv的图片识别(Python Opencv实现图像轮廓识别功能)
- 导航app开发的技术(AmazeUI导航的示例代码)
- 如何让yii2高级模板运行起来(Yii框架数据库查询、增加、删除操作示例)
- 前端app开发适配消息栏(AmazeUI 加载进度条的实现示例)
- css控制div上下移动(CSS鼠标悬浮DIV后显示DIV外的按钮解决方法)
- python中的迭代器详解(Python通过for循环理解迭代器和生成器实例详解)