勾股定理的逆定理
-
勾股定理的逆定理
勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,...
-
垂径定理和垂径定理的逆定理是什么
垂径定理内容:垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。定义:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。推论:(1)...
-
勾股定理的内容
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定...
-
关于勾股定理的资料
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定...
-
勾股定理的由来
勾股定理是一个基本的几何定理,在,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个...
-
勾股定理的概念是什么
勾股定理是指直角三角形的两条直角边的平方和等于斜边的平方。古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有5...
-
勾服定理的证明方法
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们拼成两个正方形.如此可以看到,这两个正方形的边长都是a + b,所以面积相等。即a的平...
-
勾股定理的证明方法是什么
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形。 发现四个直角三角形和一个边长为a的正方形和一个边长为b的正...
-
勾股定理的历史
:公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4...
-
证明勾股定理的方法真题
首先设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。设△ABC为一直角三角形,其直角为∠CAB。其边为B...
-
毕达哥拉斯证明勾股定理的方法
以a b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。证明四边形EFGH是一个边长为c的正...
-
三角形勾股定理公式
在直角三角形中,三角型勾股定理公式是a2+b2=c2,设直角三角形的两条直角边长度分别是a和b,斜边长度是c。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。勾股定理的证...
-
角平分线的性质定理和判定定理是什么
从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。三角形三条角平分线的交点叫做三角形的内心。三角形的内心到三边的距离相等,是该三角形内切圆的圆心。 角平分线的性质...
-
勾股定理什么时候学的
勾股定理是八年级学习的内容。勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个...
-
勾股定理
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。古代称直角三角形为勾股形,并且直角边中较小者为...
-
素数定理是什么
素数定理(prime number theorem)是素数分布理论的中心定理。关于素数个数问题的一个命题:设x≥1,以π(x)表示不超过x的素数的个数,当x→∞时,π(x)~Li(x)或π(x)~x/...
-
欧拉定理是什么
在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。复数中的欧拉定理也称为欧拉公式,被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的...
-
什么是射影定理
射影定理又称“欧几里德定理”,在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项。射影定理是数学图形计算的重要定理。在Rt△ABC中,...
-
逆定理是什么
逆定理是将某一定理的条件和结论互换所得命题也是一个定理,那互换之后的定理就是原来定理的逆定理。(即如果一个定理的逆命题能被证明为真命题,那么它叫做原定理的逆定理)。此时,这两个定理叫互逆定理。直角三角...
-
勾股定理内容和概念
定义:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a2+b2=c2。公元前十一世纪,周朝...