三角函数图像与性质一轮复习教案
-
三角函数的图像与性质
三角函数是数学中属于初等函数中的超越函数的函数,它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域;另一种定义是在直角三角形中,但...
-
正比例函数的图像和性质
性质:单调性。当k>0时,图像经过第一、三象限,从左往右上升,y随x的增大而增大(单调递增),为增函数;当k...
-
ex的定义域是多少
y=e的x次方的定义为R。y等于e的x次方是一种指数函数,其图像是单调递增,x∈R,y>0,与y轴相交于(0,1)点,图像位于X轴上方。指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常...
-
中考一轮复习方法指导
要提前做好合理的计划。学校的教学课程还没有结束,老师一般都会安排好教学时间将课程在一定时间内完成。学生应该给自己制订一个合理的计划,可按教学书籍、考试说明和综合模拟3大板块予以安排。应当重视语言材料的...
-
指数函数与对数函数性质是什么
对数函数的图像都过(1,0)点,指数函数的图像都过(0,1)点;对数(指数)函数的底数大于1时为增函数,大于0而小于1时为减函数;对数函数的图像在y轴右侧,指数函数的图像在x轴上方;对数函数的图像在区...
-
函数图像怎么画
在数学中,函数 f 的图形(或图象)指的是所有有序数对(x, f(x))组成的集合[1]。具体而言,如果x为实数,则函数图形在平面直角坐标系上呈现为一条曲线。如果函数自变量x为两个实数组成的有序对(x...
-
函数图像的伸缩变换含义
函数图像伸缩变换,是指函数本身的参数扩大或者缩小了N倍,从而导致了在图像上的伸缩,比如波幅和波长的变化,意味值波函数的参数的变化,在图形上表示为,上下收缩或者左右扩展图像伸缩变化的意义在针对某些特殊图...
-
平行线的性质教案内容
本节(课)教学目标(1)知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。(2)过程与方法:经历质疑,猜想,归纳等活动,培养学生的观察,操作说理能力...
-
幂函数的性质
正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0)。b、函数的图像在区间[0,+∞)上是增函数。c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0...
-
对数函数性质是什么
一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN...
-
反比例图像是一条什么线
在坐标上是相对的两个象限里,像背靠背的两个括号的形状曲线。反比例,指的是两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么他们就叫做成反比例的量,他们的关系...
-
三角形的性质是什么
三角形的任何两边的和一定大于第三边。由此亦可证明得三角形的任意两边的差一定小于第三边。三角形内角和等于180度。等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。直角三角形的两条直角边的平...
-
相似三角形的性质
相似三角形对应角相等,对应边成比例。相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。相似三角形周长的比等于相似比。相似三角形面积的比等于相似比的平方...
-
基本初等函数的性质是什么
性质。幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点...
-
三角形的内心有什么性质
内心在△ABC三边距离相等,这个相等的距离是△ABC内切圆的半径;若I是△ABC的内心,AI延长线交△ABC外接圆于D,则有DI=DB=DC,即D为△BCI的外心。r=S/p(S表示三角形面积)证明:...
-
幂函数是什么意思有什么特性及性质
幂函数的概念:y=x(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。幂函数的性质正值性质当α>0时,幂函数y=xα有下列性质:(1)图像都经过点(1,1)(0,0);(...
-
反比例函数的性质是什么
单调性:当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k0时,函数在x0上同为减函数;k...
-
全等三角形的性质有哪些
全等三角形的对应角相等。全等三角形的对应边相等。全等三角形的对应顶点位置相等。全等三角形的对应边上的高对应相等。全等三角形的对应角的角平分线相等。全等三角形的对应边上的中线相等。全等三角形面积相等。全...
-
奇函数的性质
两个奇函数相加所得的和或相减所得的差为奇函数。一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。两个奇函数相乘所得的积或相除所得的商为偶函数。一个偶函数与一个奇函数相乘所得的积或相除所得...
-
矩形窗函数的性质
矩形窗函数的性质如下:矩形窗属于时间变量的零次幂窗。矩形窗使用最多,习惯上不加窗就是使信号通过了矩形窗。这种窗的优点是主瓣比较集中,缺点是旁瓣较高,并有负旁瓣,导致变换中带进了高频干扰和泄漏,甚至出现...