突触传递的过程和机制(昆明动物所等揭示突触可塑性长时程增强的突触后分子机制)

中枢神经系统是脊椎动物调控最复杂、最严谨的器官之一,控制着感觉感知、情绪调节和机体维持等基本神经活动,以及思维、认知和意识等高级神经活动。大脑最重要的特征之一就是能够存储大量的信息,即学习和记忆能力,在阿兹海默病等神经精神疾病的患者中,学习和记忆能力的异常是重要的临床表征之一。神经元之间相互形成的神经突触以及介导的信息传递是神经系统一个基本而又独特的存在,也是神经网络发挥生理功能的基础,其活性异常是神经系统疾病发生的重要原因之一。神经科学研究表明,学习记忆的物质基础是神经突触联系强度的变化,由此提出“突触可塑性”这一理论,即神经元之间突触联系强度可随着神经元活性的变化而改变。

长时程增强(long-term potentiation,LTP)是突触可塑性重要的表现形式之一,是目前研究学习记忆最重要的分子细胞模型。目前关于LTP研究主要集中于突触外兴奋性AMPA受体的转运机制,突触后分子调控机制不甚清楚。近日,中国科学院昆明动物研究所盛能印课题组与美国加州大学旧金山分校Roger Nicoll实验室合作,以AMPA受体基因条件性敲除小鼠为研究系统,构建GluA1-g-8融合性AMPA受体并通过胚胎宫内电转以替代内源AMPA受体,研究谷氨酸受体复合物与突触后PDZ支架蛋白的相互作用在LTP中的功能和机制。结合海马脑片和神经电生理等手段,研究发现外源AMPA受体的突触转运只受到所融合的辅基TARP g-8的调控;而AMPA/TARP受体复合物中与突触后支架蛋白PDZ结构域的结合位点,是该受体介导的突触传递和LTP表达所必需的。进一步研究发现,谷氨酸受体的另一家族成员kainate受体与其辅基Neto蛋白所形成的受体复合物,其突触转运和LTP表达同样需要与突触后支架蛋白PDZ结构域的相互作用。研究结果表明,无论是由何种谷氨酸受体所介导,LTP表达的突触后机制很保守且由共同的机制所调控;在LTP过程中,突触后PDZ支架蛋白是主要功能靶点,而谷氨酸受体的突触转运则可能为被动协同过程。该研究揭示了突触可塑性长时程增强的突触后分子机制,为进一步阐明学习记忆的分子机制以及相关神经精神疾病的发病机理提供了重要理论基础。

相关研究成果以LTP requires postsynaptic PDZ-domain interactions with glutamate receptor/auxiliary protein complexes为题,发表在《美国国家科学院院刊》上。昆明动物所研究员盛能印为论文第一作者,并与美国加州大学旧金山分校教授Roger Nicoll为共同通讯作者。该研究得到了国家自然科学基金委、中科院战略性先导科技专项(动物复杂性状的进化解析与调控)、中科院率先行动“百人计划”的资助。

突触传递的过程和机制(昆明动物所等揭示突触可塑性长时程增强的突触后分子机制)(1)

在Gria1fl/fl Gria2 fl/fl Gria3 fl/fl条件性敲除小鼠海马CA1神经元中敲除AMPA受体、将其替换为GluA-g-8融合受体或PDZ结构位点缺失的GluA-g-8D4突变受体后,神经电生理分别考察其对突触传递(A-C)和突触可塑性LTP(D-E)的影响。

中国生物技术网诚邀生物领域科学家在我们的平台上,发表和介绍国内外原创的科研成果。

注:国内为原创研究成果或评论、综述,国际为在线发表一个月内的最新成果或综述,字数500字以上,并请提供至少一张图片。投稿者,请将文章发送至weixin@im.ac.cn

本公众号由中国科学院微生物研究所信息中心承办

中国生物技术网

回复关键词热点”可阅读热点专题文章,包括“施一公”、“肠道菌群”、“肿瘤”、“免疫”和“健康”

近期热文TOP15(统计周期:2017.2.1-2017.12.20)

直接点击文字即可浏览!

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页