数学从0到9列式子(美妙的数学第八讲)
[好玩的数学]按:这是西北农林科技大学理学院林开亮老师应湘潭大学数学与计算科学学院易年余教授邀请所做“美妙的数学”系列报告的“第八讲:从√2到单位根”(2022年6月29日),这也是该系列报告的最后一讲。征得林老师同意,我们将报告分享给各位读者。“美妙的数学”系列讲座一共八讲,主要针对本科数学专业高等代数课程的基本内容,欢迎有兴趣的朋友关注。
以下是第一至第八讲的视频回放链接,敬请关注!
“第一讲:整数”视频回放链接:
https://www.koushare.com/lives/room/447524
“第二讲:多项式”视频回放链接:
https://www.koushare.com/lives/room/065953
“第三讲:方程术”视频回放链接:
https://www.koushare.com/lives/room/047740
“第四讲:中国剩余定理”视频回放链接:
https://www.koushare.com/lives/room/026080
“第五讲:微分算子与差分算子”视频回放链接:
https://www.koushare.com/lives/room/376131
“第六讲:向量空间的几何”视频回放链接:
https://www.koushare.com/lives/room/472893
“第七讲:Hurwitz-Radon矩阵方程”视频回放链接:
https://www.koushare.com/lives/room/953948
“第八讲:从√2到单位根”视频回放链接:
https://www.koushare.com/lives/room/162555
告 读 者
本系列报告致力于分享本人对高等代数的学习心得。高等代数的更恰当的称谓是高等线性代数,它的两个核心主题是多项式与矩阵 (或线性变换)。
笔者初次学习这门课程是在近 20 年前,在天津大学数学与应用数学系读大一,教材是北大的经典教材《高等代数》。我们的老师是田代军老师,他讲得很精彩。不过我第一遍并没有学懂,我想大多数同学也是如此。后来我又读了其他一些书,重学了一遍乃至多遍,才算对高等代数勉强了解了一些。
最近,为准备这个报告,我再次翻起北大这本最新版的《高等代数》(第五版)。我突然有了新的发现:当年我没有学懂它,并不能完全怪罪于我笨我懒, 因为教材上有些地方确实没讲清楚。比如,多处说可以证明的地方并没有给出证明,再如,教材对矩阵标准形的处理过于复杂——现在的处理亦然。
经验告诉我,高等代数是可以学会的。但如果讲得太复杂,就极有可能学不会。那么,经验是什么呢?英国作家王尔德有一个精辟的解释:经验是我们给错误取的美名 (Experience is simply the name we give our mistakes)。
与其说我是这里分享心得,不如说是分享经验。因为,几乎所有这些素材,都是我当学生时所不懂的 (甚至有的还是当时畏惧抗拒逃避的),只是后来由于各种机缘,才慢慢有了一些领悟——多么痛的领悟!我相信,这点点滴滴,于数学本科生朋友有帮助——特别是考虑高等代数本身的重要性以及部分朋友要准备考研。建议您结合北大的教材来听我分享,收获也许会更大。
感谢湘潭大学数学与计算科学学院易年余教授邀请,使我有机会系统地整理并分享关于高等代数的经验教训。欢迎各位读者提出宝贵意见与建议。
林开亮,2022 年 6 月 14 日
报告人简介:林开亮博士,2006年本科毕业于天津大学,2014年博士毕业于首都师范大学,现任教于西北农林科技大学理学院。在杨振宁院士、王元院士与张奠宙教授的鼓励与影响下,致力于数学史、理论物理学史的研究与普及。《数学译林》与高等教育出版社“数学概览’丛书编委,《数学文化》特约撰稿人,在《数学传播》、《数学文化》等刊物发表多篇文章,如《弗里曼·戴森:科学家与作家的一生》《蔡天新<数学传奇>VS贝尔<数学精英>》等,另有多篇原创文章见于“和乐数学’’、“好玩的数学’等公众号。在杨振宁先生指导下,创作人物传记《戴森传奇》,深受读者喜爱。与朋友合作翻译《当代大数学家画传》、《数学与人类思维》、《数学巨匠》、《数学家讲解小学数学》、《微积分及其应用》等通俗或专业名著,编著《杨振宁的科学世界:数学与物理的交融》。
资助单位:湘潭大学数学与计算科学学院,湖南国家应用数学中心,国家自然科学基金委
关于系列报告的详细介绍,见>>高等代数入门难?请看林开亮科普讲座:高等代数八讲
以下是“第八讲:从根2到单位根”报告PPT全文:
林开亮老师往期报告链接汇集如下>>
林开亮:从杨辉三角到李善兰垛积术
林开亮:从《射雕英雄传》到《四元玉鉴》
林开亮:从《射雕英雄传》到《九章算术注》
林开亮:从射雕到九章
林开亮:华罗庚先生在矩阵论方面的贡献(全国数学文化论坛报告),https://slideum.com/doc/258826/
林开亮:华罗庚的生平与工作概览
林开亮、陈见柯:Hardy的生平与工作概览(全国数学文化论坛报告)
林开亮:Dirac的生平与工作概览
林开亮:李-杨单位圆定理https://math.sjtu.edu.cn/conference/Bannai/2016/data/20160611A/slides.pdf
林开亮:杨振宁先生数理工作漫谈:单位圆定理及其他(全国数学文化论坛报告)
林开亮:沐浴在数学的春风里——一个数学人的分享
林开亮:在教学与服务中传播数学文化(陕西高校数学教学论坛报告)
林开亮:整数与多项式:平行的世界
林开亮:整式和分式:与整数和分数平行的世界
林开亮:从方与圆谈起
林开亮:从√2谈起: 正多边形对角线比值的无理性
林开亮:三角漫谈
林开亮:提问的艺术——推广与类比漫谈
林开亮:小学数学教师的朋友:《数学家讲解小学数学》
林开亮:分享读《数学家讲解小学数学》的心得
林开亮:中国剩余定理新讲
林开亮:数论漫谈:从√2到单位根
林开亮:“数学之美”通俗报告
林开亮:“方程术”科普报告
林开亮:数学史对教学研究的启发
林开亮:美妙的数学第一讲:整数
林开亮:美妙的数学第二讲:多项式
林开亮:美妙的数学第三讲:方程术
林开亮:美妙的数学第四讲:中国剩余定理
林开亮:美妙的数学第五讲:微分算子与差分算子
林开亮:美妙的数学第六讲:向量空间的几何
林开亮:美妙的数学第七讲:Hurwitz-Radon矩阵方程
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com