算术文化常识(古代算数几何形体)

本文为“2022年第四届数学文化征文活动

古代算数几何形体——阳马与鳖臑

作者 : 虞旻洋

作品编号:044

1.试题再现

(2015年湖北高考文科数学)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图1所示的阳马p-ABCD中,侧棱PD底面ABCD,且PD=CD,点E是PC的中点,连接DE,BD,BE。

(I)证明:DE平面PBC.试判断四面体EBCD是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;

(II)记阳马P-ABCD的体积为,四面体EBCD的体积为,求的值.(解答略)

算术文化常识(古代算数几何形体)(1)

2.数学史料

《九章算术·商功》:“斜解立方,得两壍堵。斜解壍堵,其一为阳马,一为鳖臑。阳马居二,鳖臑居一,不易之率也。合两鳖臑三而一,验之以棊,其形露矣。”

“阳马居二,鳖臑居一,不易之率也”,今称为刘徽原理。刘徽注《九章算术》关于体积问题的论述已经接触到现代体积理论的核心问题,指出四面体体积的解决是多面体体积理论的关键,而用有限分割和棋验法无法解决其体积。为了解决这个问题,他提出了一个重要原理:斜解壍堵,其一为阳马,一为鳖臑。

3.直观阐释

根据数学史料的阐述,可以分析得到“阳马”与“鳖臑”的具体图形。

取一长方体,按下图斜割一分为二,得两个一模一样的三棱柱,称为堑堵。

算术文化常识(古代算数几何形体)(2)

再沿堑堵的一顶点与相对的棱剖开,得四棱锥和三棱锥各一个。以矩形为底,另有一棱与底面垂直的四棱锥,称为阳马。余下的三棱锥是由四个直角三角形组成的四面体,称为鳖臑。

算术文化常识(古代算数几何形体)(3)

4.学习与感受

这个阳马与鳖臑的问题在学习立体几何的概念中在课堂上被数学老师提出,当时上课的时候,同学们都在感慨古人的智慧,所以也激发了同学们学习几何的热情。原来在同学眼里复杂的几何图形也能有如此有趣的历史背景,但当时是以例题形式被展现出来,对此感兴趣的我也上网去查阅了一下,在湖北省高考文科数学卷上,一道几何题中出现了“阳马”与“鳖臑”两个名词,我放在了试题再现。

在我们普遍印象中,数学在我们日常生活中的应用和我们所学的可能远远所不能及,我们经常在私底下会说:“学几何干啥呀?又难学日常也没用啊!”可就在我们对于几何模型抱怨不停的时候,阳马与鳖臑的古代数学几何模型打破了我们传统认知,古人也学这个!瞬间激起了同学们的好奇心。

相对于枯燥的数字与毫无生气的模型,有古典名称与背景的模型更受同学们的“欢迎”,也让我对数学以及数学史产生了浓厚的兴趣,再往后学习其他数学知识时,往往会去了解一下其发展史或历史小故事,在越来越多的接触中,我发现了数学不再让我过于恐惧,我对数学也有了一定的信心。

每个人在世界的范围内都近似于—个小小的点,但几个细微的点就可以扩充为—个几何体,增大数倍的体积与能量。无论你身处何方,都要手握—条条线,将自己与他人连成—个整体,立足于这个世界之中。“个人如果单靠自己,如果置身于集体之外,如果置身于团结民众的思想范围之外,就会—无所用。”高尔基这样告诉我们。我相信,小小的点掌握了几何体的位置关系,就可以拥有它的力量。世界是—个大的整体,就看你向哪里进发。

茫茫世界,人的一生好比一个坐标系。无论是点、面、线、体,都在其中。正如毕达哥拉斯所说:“数学统治着宇宙。”其实,那道道数学题中正蕴含着种种人生哲理。

已发文章>>

001 阅读《数学的故事》有感

002 我想和数学谈场恋爱

003 数学“化错”中的美

004 让数学思考成为数学课堂的主旋律

005 卢梭的“错”?

006 数学教学案例《找次品》

007 基于优化学生数学思维的高效课堂创建——以等腰三角形的判定一课为例

008 从特殊到一般,引导数学思维

009 数学文化融入家庭教育的研究

010 sin 震荡函数的图像分析

011 四阶幻方的“太极图”性质

012 无理数的定义和实数理论的建立

013 一个容易被忽视的问题——数学文化

014 “双减”背景下初中数学学科的合作学习方式探究

015 中学数学德育渗透的方法与路径

016 《数学的力量》读后感

017 基于数学文化的单元统整教学设计——以“圆的认识与面积”教学为例

018 有助于数的理解的数字圈环

019 以折叠为例,探究生长型数学教学模式

020 我从事数学科普写作的经验与启示

021 在阅读中滋长智慧——读《教育智慧从哪里来》有感

022 学习数学史 做数学的使者

023 开数学文化之窗 启数学文化魅力——阅读《美丽的数学》有感

024 “文学独白”——数学教学因你而精彩

025 如何用多面体三等分正方体

026 HPM视角下《圆的周长》教学设计

027 被误解的“勾股定理”

028 好玩的数学

029 帮小青蛙设计一个井

030 万物的基础——数学——读《从一到无穷大》有感

031 读《孙子算经》鸡兔同笼问题有感

032 HPM视角下高中数学多样化作业的设计

033 攀越高峰的领路人——数学文化

034 我的好兄弟:数学

035 细嗅数学文化之香

036 藤蔓的喜悦

037 物理力学中数学的影子

038 复数外传

039 函数的历史和发展

040 数学文化与我

041 数学之趣

算术文化常识(古代算数几何形体)(4)

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页