高中数学立体几何和空间向量(备战高考高中数学)

立体几何中的存在性问题常见的有平行、垂直、距离和夹角这些常考不衰的重点内容,命题设置常以解答题的形式出现.近几年在高考中还出现了一些设置新颖的存在性探索性问题,这些问题多以客出题的形式出现,成为高考数学命题的一个新亮点.

由于此类问题涉及到的点具有运动性和不确定性属于动态几何问题,用纯几何的方法来解决对空间想像能力、作图能力和逻辑推理能力的要求很高,大多考生都不敢问津.若用向量方法处理,尤其是通过建立空间直角坐标系利用待定系数法求解存在性问题则思路简洁明了,解法程序化操作方便.下面我们通过典型例题解读向量法求解立体几何存在性问题的类型和方法.

需要打印版的同学,可在文末获取。

一、几种常见的存在性问题

1.平行垂直有关的存在性问题

平行与垂直是立体几何的两种重要的位置关系,其中线线的平行与垂直是基础,线面平行和垂直是重点考查内容,应引起高度关注.

例题:

高中数学立体几何和空间向量(备战高考高中数学)(1)

高中数学立体几何和空间向量(备战高考高中数学)(2)

例2(2020年12月28日开考的“大课改大数据大测评”2021届高三联合测评数学试题的第20题)

高中数学立体几何和空间向量(备战高考高中数学)(3)

高中数学立体几何和空间向量(备战高考高中数学)(4)

夹角问题主要有线线角、线面角和面面角,其中线线角是基础,线面角和面面角是高考重点考查内容.

例3(2012年湖北省八市高三三月联考理科第18题)

一个四棱锥的三视图如图2所示.

(Ⅰ)求证PABD;

(Ⅱ)在线段PD上是否存在一点Q,

使二面角Q-AC-D的平面

高中数学立体几何和空间向量(备战高考高中数学)(5)

高中数学立体几何和空间向量(备战高考高中数学)(6)

点拨:线线角、线面角和面面角是立体几何中与角有关的主要问题,利用向量法解决此类问题可以避开抽象、复杂的寻找角的过程,只要能够准确理解和熟练应用下列公式就可以使此类问题巧妙获解.

高中数学立体几何和空间向量(备战高考高中数学)(7)

3. 与距离有关的存在性问题空间中的距离问题主要有点点距离、点线距离、点面距离、线面距离和面面距离等,其中点面距离是高考重点考查内容.

高中数学立体几何和空间向量(备战高考高中数学)(8)

高中数学立体几何和空间向量(备战高考高中数学)(9)

二、几道别致的存在性高考创新题

例5(2010高考全国卷Ⅱ理科第11题)

与正方体的三条棱所在直线

的距离相等的点( )

A.有且只有1个 B.有且只有2个

C.有且只有3个 D.有无数个

高中数学立体几何和空间向量(备战高考高中数学)(10)

点拨 这是一道与三线等距的点的存在性创新探索题,本解法从特殊入手,通过直觉思维和合情推理,归纳猜想直线DB1上的任意一点到三条棱所在直线的距离相等,然后通过坐标法进行演绎推理验证猜想.

例6(2010年高考江西卷理科第10题)

高中数学立体几何和空间向量(备战高考高中数学)(11)

点拨 这是一道与三线等角的直线的存在性创新考题,本解法通过建系设点,利用两直线的夹角与两直线的方向向量夹角的余弦值的绝对值相等建立等量关系,把直线的条数问题转化为直线的不共线方向向量的种数问题而使问题得以解决.

例7(2008年辽宁理科第11题)

高中数学立体几何和空间向量(备战高考高中数学)(12)

高中数学立体几何和空间向量(备战高考高中数学)(13)

点拨 这是一道与三线都相交的直线的存在性创新考题,本题若用几何构造法则费时费力很难凑效,本解法采用坐标法巧妙设点,然后根据三点共线的向量关系列方程,将直线存在性问题转化为判断方程组的解的个数问题,从而使问题得以解决.

除以上内容,老师还整理了关于数学各模块题型的精讲,如:函数的对称性、周期性、三角恒等变换、求通项公式、10分钟搞定选择题、求单调性等,通过钻研近十年高考真题总结的425类688道必考、常考数理化题型,含金量远超高考押题卷,能够让你精准刷题,快速掌握采分技巧。

需要的同学可发送关键字“母题”来免费获取。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页