关于ai你不知道的事ai大会告诉你(我和AI一起完成了这篇文章)
大部分文艺工作者,比如写字的,画画的,作曲的,失业风险都在攀升——本文所有插图均由 AI 创作。但文字是我自己写的,如假包换。
最近 Open AI 的 Dall-E 2 创造的一系列精美画作,以及结合微软 Florence 和 OpenAI GPT-3 模型写出来的文本,都证明了 AI 有时候看着是比人强。今年叫 AI 文艺创作元年也不过分,通过给定的文字或图像, AI 能产出超乎想象、大胆有趣又合情合理的作品,确实不乏「划时代」的意义。
▲Dall-E 2 制作的宇航员太空驱马图
这些进展建立在巨大的「基石模型」基础之上,令 AI 拥有了创造者不曾预见的能力。过去的人工智能模型,带着手工作坊式的「粗糙」。通过长期的调整,「基石模型」的潜在能力已经成为肉眼可见的发展趋势。
人工智能要进入工业大生产时代了。
大模型,下岗工人制造机5 月份出了 beta 版的 AI 绘图工具 Midjourney ,连杂志《经济学人》也忍不住「尝鲜」。Midjourney 为《经济学人》报道画的插图,看起来灵气十足,具有强烈的现代主义风格——别忘了,画面可是基于非常抽象的概念生成的,毕竟文章内容不是「一位女人抱着一只猫」这种具体记叙。
▲Midjourney 为《经济学人》报道画的插图
Midjourney 其中一位开发者,就是研发 YouTuber Quick-Eyed Sky 的 Disco Diffusion 的创作者 Somnai ,这些应用都属于「你说我画」,或者叫输入关键词就出图。Disco Diffusion 非常火爆,但相比 DALL-E 和 Midjourney 就略带「门槛」,要自己调代码,调参数,目前更火爆的应用都是「傻瓜」型的,写点文字就行。
▲ Somnai 用 Disco Diffusion 制作的视频
玩「你说我画」会上瘾。Twitter 上的马斯克、特朗普、斯嘉丽·约翰逊以及玛丽莲·梦露都要被「玩坏了」,个个都有「猛鬼街」的造型。国内滴墨社区儿童节上线的「Domo 大画家」,在我刻意「刁难」的情况下,给出的画面还是饶有趣味。
▲我让 Domo 画了 2008 年诺贝尔经济学奖得主保罗·克鲁格曼的一句话,“在市场经济下,你的支出就是我的收入”
输出的作品效果如何,完全取决于 AI 模型。而打造 AI 模型,相当于豪华军备竞赛。
目前拿得出手的「基石模型」,有 OpenAI 的 GPT-3 ,参数接近 2000 亿,耗资超过 1000 万美元;谷歌的 Switch Transformer ,参数超过 GPT-3 ;微软和英伟达有 MT-NLG 模型,参数超 5000 亿;华为盘古大模型,定位中文语言预训练模型,参数规模也达到千亿级别。
2020 年 GPT-3 刚「诞生」的时候,就得名「下岗工人制造机」。其轻松通过了人工智能届的底线试探——「图灵测试」,所有问题对答如流。基于 GPT-3 模型开发出来的文字、翻译、设计、计算等应用,都能顶替人类的操作。
甚至有个人想让 GPT-3 写篇「论刷 Twitter 的重要性」的小论文,GPT-3 都给他写得流畅自然,还用上了写作者的高阶操作「春秋笔法」,也就是阴阳怪气。它说 Twitter 是「所有人都使用的、充斥着人身攻击的社交软件」。
▲拿到这张《草地上的午餐》(莫奈)的原图,Dall-E 2 会据此创作出多张风格类似、细节不同的画面
▲《草地上的午餐》之 AI 再创作,理论上可以有无限幅
基石模型的优点明显。一是参数大、训练数据量大,不仅不会边际效益递减,反而极大地提高了 AI 自身的能力和运算突破性。二是使用的小样本学习方法, AI 不用一遍遍「从头开始学」,可以碎片化选取自己需要的数据来自动执行。
基石模型就相当于「通用技术」。1990 年代,经济历史学家将「通用技术」比如蒸汽机、印刷机、电动机等,视为推动生产力长期发展的关键因素。「通用技术」包含核心技术快速迭代、跨部门的广泛适用性和溢出效应等特征,从而刺激产品、服务和商业模式不断创新。
今天的基石模型,已然具备了同样的特点。
神经网络 自我监督学习,神乎其技当下,超过 80% 的人工智能研究都集中在基石模型上。像特斯拉也在构建一个庞大的基石模型,为自动驾驶服务。
要理解斯坦福大学人工智能研究院院长李飞飞所说的「人工智能阶段性的变化」,就要知道基石模型和过去的人工智能模型有何不同。
如今所有的机器学习模型都立足于「神经网络」——模仿脑细胞相互作用方式的编程上。它们的参数描述了虚拟神经元之间连接的权重,模型通过反复试验权重,被「训练」到能够输出开发者想要得到的特定内容。
▲Dall-E 和 Dall-E 2 的清晰度对比
过去几十年里,神经网络都处于实验阶段,没什么能落地的。直到 2000 年代末、2010 年代初,超级计算机算力增强,互联网提供了足够多的训练数据,在硬件和数据的加持下,神经网络才开始完成文本翻译、语音指令解释、不同图片中识别同一张脸等此前「不可能完成的任务」。
特别到了 2010 年代,机器学习和矿机一样也用起了 GPU 。GPU 的特点是,有上千颗流处理器,可以进行大量且重复的一般运算,而且还不贵,比启动一次超级计算机便宜太多了。
突破出现在 2017 年。当时谷歌的 BERT 模型使用了新型架构,不再按「惯例」、依照顺序处理数据,而是采用了同时「查看」所有数据的机制。
具体来说,就是 BERT 一类的模型,没有用预先标记的数据库训练,用的是「自我监督学习」技术。当模型在无数的字节中挖掘时,能自己找到隐藏的单词,或者根据上下文猜测意思——和我们从小到大做的考试题特别像!整个新方法非常接近人类大脑的学习机制,扫一眼就能找到自己感兴趣的东西,不用逐字逐句地去处理、消化。
▲Dall-E 2 在左图的基础上,添加了一只粉色橡皮鸭(毫无 PS 痕迹)
经过数十亿次的猜测-比较-改进-猜测的循环后,模型一般都能妙笔生花、才华过人。
不仅限于文字,神经网络和自我监督学习技术均可以应用在语言文字之外,包括图片、视频甚至大分子数据库等等。像 DALL-E 图形模型,猜测的不是下一个字母组合,而是下一个像素簇。
在大模型基础上开发的应用也是花样繁多。除了上文提到的一系列文艺创作类应用,谷歌旗下的 DeepMind 推出了 Gato ,可以玩视频游戏、控制机械臂和写作。Meta 的「世界模型」貌似要搁浅,本来是打算为元宇宙提供背景的。
酷东西或图灵陷阱基石模型的繁荣,对芯片制造商肯定是好消息。积极参与制造基石模型的英伟达,已经是世界上最有价值的半导体设计商之一,市值为 4680 亿美元。
初创公司也有望借此大展身手。Birch AI 会自动记录与医疗保健相关的呼叫电话;Viable 会用它来筛选客户反馈;Fable Studio 用 AI 创作互动故事;在 Elicit 上,人们可以靠 AI 工具从学术论文中找到自己研究的问题。
▲Midjourney 采用了拼贴风
大公司也有大公司的玩法。IBM 的相关负责人表示,基石模型可以分析海量的企业数据,甚至从车间传感器读数中找到消耗成本的蛛丝马迹。埃森哲公司人工智能项目的负责人预测「工业基石模型」即将兴起,为银行、汽车制造商等传统客户提供更加精准的分析服务。
虽然前景一片光明,AI 作画也激发了大众的热情,但不少研究者还是建议「后退一步」。有人认为,大模型依赖的大数据,并不是完全发挥了作用,一部分只是在「随机重复」;同时一些带有偏见的问题会引发模型的「幻觉」。去年年初,GPT-3 在回答完形填空题「两个 XXX(宗教人士)走进了……」时,有高于 60% 的概率填写「穆斯林」。
在「滴墨社区」刷「Domo 大画家」的动态时,首页偶尔也会看到有用户给 AI 发出不雅指令,CEO 林泽浩告诉爱范儿记者,一般后台关键词筛选和人工筛选会同时进行,保证社区的健康运转。Dall-E 2 等 AI 作画工具也面临同样的困境——和之前微软小冰「口吐芬芳」同命相怜。
▲女人与猫,这一张 Midjourney 用了哪位著名画家的风格?请在评论区留言,答对有奖
斯坦福大学经济学家 Erik Brynjolfsson 担心,对拥有类人能力的大模型的集体痴迷,很容易把整个社会带进「图灵陷阱」。计算机做到了很多人类做不到的事情,如今也做到了人类能做到的事情——还比人类做得好,越来越多的人失去工作,财富和权力会更加集中,不平等逐渐加大。
他的担心也有道理。大模型耗资巨大,一般人也投资不起,背后的支撑者,不是科技巨头,就是国家。基石模型会成为一系列服务的基础平台,而平台也有「马太效应」:赢家通吃,就算没全吃掉,也给别人留不下什么了。
▲网友利用 Midjourney 创作的画面,科幻风格十足
艺术家们是真心喜爱这些「酷东西」的。英国作曲家 Reeps One(Harry Yeff)就给模型喂了几小时的节拍器节奏,该模型学完后能对他的声音做出节奏化的反应。他预测「许多艺术家会使用这个工具来更好地完成自己的工作」。
作为一名记者,我也真心喜爱「科大讯飞」的语音转录应用。在过去,整理两小时的人物访谈录音,足以令一个心智健康的成年人当场崩溃。如今只需要坐等软件出一个文本文档即可,不能直接拿来当「对话」,但当素材看完全够了。
最近我也在研究如何使用 GPT-3 来训练自己的写作模型。说不定,下个星期四「近未来」栏目,就是我的 AI 写的。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com