生物化学第二版教材笔记(生物化学笔记5-6章节)

第五章 酶 类提要,我来为大家科普一下关于生物化学第二版教材笔记?下面希望有你要的答案,我们一起来看看吧!

生物化学第二版教材笔记(生物化学笔记5-6章节)

生物化学第二版教材笔记

第五章 酶 类

提要

一.概述

酶的特性 酶的分类

二.酶的结构

单纯酶 结合酶 辅酶与辅基 单体酶 寡聚酶 多酶体系 活性中心 同工酶

三.酶的催化机制

诱导契合假说 酶加快反应速度的因素

四.酶促发应动力学

米氏方程 米氏常数及意义 bi-bi反应 影响酶促反应的因素 激活剂 抑制剂 竞争性抑制 非竞争性抑制

五.酶的调节

变构调节 共价修饰调节 酶原 酶原激活

第一节 概述

一、定义

酶是一种生物催化剂,是有催化功能的蛋白质。

二、人们对酶的认识过程

1833年佩延(Payen)和Persoz从麦芽中抽提出一种对热敏感的物质,这种物质能将淀粉水解成可溶性糖,被称为淀粉糖化酶(diastase),意思是“分离”。所以后人命名酶时常加词尾-ase。由于他们用乙醇沉淀等方法提纯得到了无细胞的酶制剂,并发现了酶的催化特性和热不稳定性,所以一般认为他们首先发现了酶。

19世纪西方对发酵现象的研究推动了对酶的进一步研究。巴斯德提出“酵素”一词,认为只有活的酵母细胞才能进行发酵。现在日本还经常使用“酵素”一词(ferment)。1878年德国人库恩(Kuhne)提出“Enzyme”一词,意为“在酵母中”。1896年德国人巴克纳(Buchner)兄弟用石英砂磨碎酵母细胞,得到了能催化发酵的无细胞滤液,证明发酵是一种化学反应,与细胞的活力无关。这项发现涉及到了酶的本质,有人认为这是酶学研究的开始。

1913年米凯利斯(Michaelis)和门顿(Menten)利用物理化学方法提出了酶促反应的动力学原理—米氏学说,使酶学可以定量研究。1926年美国人J. B. Sumner从刀豆中结晶出脲酶(第一个酶结晶),并提出酶是蛋白质的观点。后来陆续得到多种酶的结晶,证明了这种观点,萨姆纳因而获得1947年诺贝尔奖。此后多种酶被发现、结晶、测定结构,并产生了酶工程等分支学科。

进入80年代后,核糖酶(ribozyme)、抗体酶、模拟酶等相继出现,酶的传统概念受到挑战。1982年Cech等发现四膜虫26S rRNA前体具有自我剪接功能,并于1986年证明其内含子L-19 IVS具有多种催化功能。此后陆续发现多种具有催化功能的RNA,底物也扩大到DNA、糖类、氨基酸酯。还有人在实验室中设计合成新的核糖酶。甚至有人发现博莱霉素等肽类抗生素也有催化能力。这些新发现不仅增加了对酶的本质的研究,也有助于对生命起源等问题的探讨,使酶学研究进入新的阶段。

三、酶的特性

酶是生物体产生的,有催化能力的蛋白质。细胞内的蛋白质,90%都有催化活性。酶是一种生物催化剂,与一般催化剂一样,只改变反应速度,不改变化学平衡,并在反应前后本身不变。但酶作为生物催化剂,与一般的无机催化剂相比有以下特点:

1.催化效率高 酶的催化效率比无机催化剂高106-1013倍。举例来说,1mol马肝过氧化氢酶在一定条件下可催化5×106摩尔过氧化氢分解,在同样条件下1mol铁只能催化6×10-4摩尔过氧化氢分解。因此,这个酶的催化效率是铁的1010倍。也就是说,用过氧化氢酶在1秒内催化的反应,同样数量的铁需要300年才能反应完。

2.专一性强 一般催化剂对底物没有严格的要求,能催化多种反应,而酶只催化某一类物质的一种反应,生成特定的产物。因此酶的种类也是多种多样的。酶催化的反应称为酶促反应,酶促反应的反应物称为底物。酶只催化某一类底物发生特定的反应,产生一定的产物,这种特性称为酶的专一性。

各种酶的专一性不同,包括结构专一性和立体专一性两大类,结构专一性又有绝对专一性和相对专一性之分。绝对专一性指酶只催化一种底物,生成确定的产物。如氨基酸:tRNA连接酶,只催化一种氨基酸与其受体tRNA的连接反应。相对专一性指酶催化一类底物或化学键的反应。如醇脱氢酶可催化许多醇类的氧化反应。还有许多酶具有立体专一性,对底物的构型有严格的要求。如乳酸脱氢酶只能催化L-乳酸,不能催化D-乳酸的反应。

3.反应条件温和 酶促反应不需要高温高压及强酸强碱等剧烈条件,在常温常压下即可完成。

4.酶的活性受多种因素调节 无机催化剂的催化能力一般是不变的,而酶的活性则受到很多因素的影响。比如底物和产物的浓度、pH值以及各种激素的浓度都对酶活有较大影响。酶活的变化使酶能适应生物体内复杂多变的环境条件和多种多样的生理需要。生物通过变构、酶原活化、可逆磷酸化等方式对机体的代谢进行调节。

5.稳定性差 酶是蛋白质,只能在常温、常压、近中性的条件下发挥作用。高温、高压、强酸、强碱、有机溶剂、重金属盐、超声波、剧烈搅拌、甚至泡沫的表面张力等都有可能使酶变性失活。不过自然界中的酶是多种多样的,有些酶可以在极端条件下起作用。有些细菌生活在极端条件下,如超噬热菌可以生活在90℃以上环境中,高限为110℃;噬冷菌最适温度为-2℃,高于10℃不能生长;噬酸菌生活在pH1以下,噬碱菌的最适pH大于11;噬压菌最高可耐受1035个大气压。这些噬极菌的胞内酶较为正常,但胞外酶却可以耐受极端条件的作用。有些酶在有机溶剂中可以催化在水相中无法完成的反应。

四、酶的命名与分类

1.命名

酶的命名法有两种:习惯命名与系统命名。习惯命名以酶的底物和反应类型命名,有时还加上酶的来源。习惯命名简单,常用,但缺乏系统性,不准确。1961年国际酶学会议提出了酶的系统命名法。规定应标明酶的底物及反应类型,两个底物间用冒号隔开,水可省略。如乙醇脱氢酶的系统命名是:醇:NAD 氧化还原酶。

2.分类

按照催化反应的类型,国际酶学委员会将酶分为六大类。在这六大类里,又各自分为若干亚类,亚类下又分小组。亚类的划分标准:氧化还原酶是电子供体类型,移换酶是被转移基团的形状,水解酶是被水解的键的类型,裂合酶是被裂解的键的类型,异构酶是异构作用的类型,合成酶是生成的键的类型。

(1)氧化还原酶 催化氧化还原反应,如葡萄糖氧化酶,各种脱氢酶等。是已发现的量最大的一类酶,其氧化、产能、解毒功能,在生产中的应用仅次于水解酶。需要辅因子,可根据反应时辅因子的光电性质变化来测定。按系统命名可分为19亚类,习惯上可分为4个亚类:

²脱氢酶:受体为NAD或NADP,不需氧。

²氧化酶:以分子氧为受体,产物可为水或H2O2,常需黄素辅基。

²过氧物酶:以H2O2为受体,常以黄素、血红素为辅基

²氧合酶(加氧酶):催化氧原子掺入有机分子,又称羟化酶。按掺入氧原子个数可分为单加氧酶和双加氧酶。

(2)移换酶类 催化功能基团的转移反应,如各种转氨酶和激酶分别催化转移氨基和磷酸基的反应。移换酶也叫转移酶,多需要辅酶,但反应不易测定。按转移基团性质,可分为8个亚类,较重要的有:

²一碳基转移酶:转移一碳单位,与核酸、蛋白质甲基化有关。

²磷酸基转移酶:常称为激酶,多以ATP为供体。少数蛋白酶也称为激酶(如肠激酶)。

²糖苷转移酶:与多糖代谢密切相关,如糖原磷酸化酶。

(3)水解酶类 催化底物的水解反应,如蛋白酶、脂肪酶等。起降解作用,多位于胞外或溶酶体中。有些蛋白酶也称为激酶。可分为水解酯键(如限制性内切酶)、糖苷键(如果胶酶、溶菌酶等)、肽键、碳氮键等11亚类。

(4)裂合酶类 催化从底物上移去一个小分子而留下双键的反应或其逆反应。包括醛缩酶、水化酶、脱羧酶等。共7个亚类。

(5)异构酶类 催化同分异构体之间的相互转化。包括消旋酶、异构酶、变位酶等。共6个亚类。

(6)合成酶类 催化由两种物质合成一种物质,必须与ATP分解相偶联。也叫连接酶,如DNA连接酶。共5个亚类。

3.酶的编号

国际酶学委员会根据酶的类别,给每种酶规定了统一的编号。酶的编号由EC和4个用圆点隔开的数字组成。EC表示酶学委员会,第一个数字表示酶的类别,第二个数字表示酶的亚类,第三个数字表示酶的小组,第四个数字表示酶在小组中的序列号。如EC1.1.1.1表示这个酶是氧化还原酶,电子供体是醇,电子受体是NAD ,序列号是1,即乙醇脱氢酶。胰蛋白酶的编号是EC3.4.4.4,4个数字分别表示它的类型是水解酶;水解的键是肽键;是内切酶而不是外切酶;序列号是4。多功能酶可以有多个编号。

五、酶的活力

1.定义 指酶催化一定化学反应的能力。

2.单位 在特定条件下,1分钟内转化1微摩尔底物所需的酶量为一个活力单位(U)。温度规定为25度,其他条件取反应的最适条件。

比活:每毫克酶蛋白所具有的酶活力。单位是u/mg。比活越高则酶越纯。

转化数:每分子酶或每个酶活性中心在单位时间内能催化的底物分子数(TN)。相当于酶反应的速度常数kp。也称为催化常数(Kcat)。1/kp称为催化周期。碳酸酐酶是已知转换数最高的酶之一,高达36×106每分,催化周期为1.7微秒。

3.测定 一般采用测定酶促反应初速度的方法来测定活力,因为此时干扰因素较少,速度保持恒定。反应速度的单位是浓度/单位时间,可用底物减少或产物增加的量来表示。因为产物浓度从无到有,变化较大,而底物往往过量,其变化不易测准,所以多用产物来测定。

第二节 酶的结构

一、酶分子的化学组成

酶的本质是蛋白质。酶与其他蛋白一样,由氨基酸构成,具有一、二、三、四级结构。酶也会受到某些物理、化学因素作用而发生变性,失去活力。酶分子量很大,具有胶体性质,不能透析。酶也能被蛋白酶水解。

1.辅因子

有些酶完全由蛋白质构成,属于简单蛋白,如脲酶、蛋白酶等;有些酶除蛋白质外,还含有非蛋白成分,属于结合蛋白。其中的非蛋白成分称为辅因子(cofactor),蛋白部分成为酶蛋白,复合物叫全酶。辅因子一般起携带及转移电子或功能基团的作用,其中与酶蛋白以共价键紧密结合的称为辅基,以非共价键松散结合的称为辅酶。

在催化过程中,辅基不与酶蛋白分离,只作为酶内载体起作用,如黄素蛋白类酶分子中的FAD、FMN辅基携带氢,羧化酶的生物素辅基携带羧基等等。辅酶则常作为酶间载体,将两个酶促反应连接起来,如NAD 在一个反应中被还原成NADH,在另一个反应中又被氧化回NAD 。它在反应中象底物一样,有时也称为辅底物。

有30%以上的酶需要金属元素作为辅因子。有些酶的金属离子与酶蛋白结合紧密,不易分离,称为金属酶;有些酶的金属离子结合松散,称为金属活化酶。金属酶的辅因子一般是过渡金属,如铁、锌、铜、锰等;金属活化酶的辅因子一般是碱金属或碱土金属,如钾、钙、镁等。

2.单体酶、寡聚酶和多酶体系

由一条肽链构成的酶称为单体酶,由多条肽链以非共价键结合而成的酶称为寡聚酶,属于寡聚蛋白。有时在生物体内一些功能相关的酶被组织起来,构成多酶体系,依次催化有关的反应。构成多酶体系是代谢的需要,可以降低底物和产物的扩散限制,提高总反应的速度和效率。

有时一条肽链上有多种酶活性,称为多酶融合体。如糖原分解中的脱支酶在一条肽链上有淀粉-1,6-葡萄糖苷酶和4-α-D-葡聚糖转移酶活性;来自樟树种子的克木毒蛋白(camphorin)由一条肽链组成,有三种活性:① RNA N-糖苷酶活性,可水解大鼠28S rRNA中第4324位腺苷酸的糖苷键,释放一个腺嘌呤;② 依赖于超螺旋DNA构型的核酸内切酶活性,专一解旋并切割超螺旋环状DNA形成缺口环状和线状DNA;③ 超氧化物歧化酶活性。来自红色链孢霉的AROM多酶融合体是二聚体,每条肽链含五种酶活性,可催化莽草酸途径的第二至第六步反应,由于有中间产物的传递通道,使催化效率大为提高。

二、酶的活性中心

1.定义

酶是大分子,其分子量一般在一万以上,由数百个氨基酸组成。而酶的底物一般很小,所以,直接与底物接触并起催化作用的只是酶分子中的一小部分。有些酶的底物虽然较大,但与酶接触的也只是一个很小的区域。因此,人们认为,酶分子中有一个活性中心,它是酶分子的一小部分,是酶分子中与底物结合并催化反应的场所。活性中心是有酶分子中少数几个氨基酸残基构成的,它们在一级结构上可能相距很远,甚至位于不同的肽链上,由于肽链的盘曲折叠而互相接近,构成一个特定的活性结构。因此活性中心不是一个点或面,而是一个小的空间区域。

2.分类

活性中心的氨基酸按功能可分为底物结合部位和催化部位。前者负责识别特定的底物并与之结合。它们决定了酶的底物专一性。催化部位是起催化作用的,底物的敏感键在此被切断或形成新键,并生成产物。二者的分别并不是绝对的,有些基团既有底物结合功能又有催化功能。

Koshland将酶分子中的残基分为四类:接触亚基负责底物的结合与催化,辅助亚基起协助作用,结构亚基维持酶的构象,非贡献亚基的替换对活性无影响,但对酶的免疫、运输、调控与寿命等有作用。前二者构成活性中心,前三者称为酶的必须基团。

活性中心以外的部分并不是无用的,它们能够维持酶的空间结构,使活性中心保持完整。在酶与底物结合后,整个酶分子的构象发生变化,这种扭动的张力使底物化学键容易断裂。这种变化也要依靠非活性中心的协同作用。

一般单体酶只有一个活性中心,但有些具有多种功能的多功能酶具有多个活性中心。如大肠杆菌DNA聚合酶I是一条109kd的肽链,既有聚合酶活性,又有外切酶活性。

3.形成过程

有些酶在细胞内刚刚合成或分泌时,尚不具有催化活性,这些无活性的酶的前体称为酶原。酶原通过激活才能转化为有活性的酶。酶原的激活是通过改变酶分子的共价结构来控制酶活性的一种机制,通过肽链的剪切,改变蛋白的构象,从而形成或暴露酶的活性中心,使酶原在必要时被活化成为有活性的酶,发挥其功能。

4.研究活性中心的方法

酶的底物和竞争性抑制剂的结构特点有助于研究酶的活性中心的结构。酶的最适pH及速度常数等动力学特点也可提供一些信息。

化学修饰在活性中心的研究中起过很重要的作用。因为活性中心的基团反应性常与其他基团不同,所以一些试剂可以专一性地与活性中心中的某种残基反应,而不与活性中心外的残基作用。如DFP(二异丙基氟磷酸)可与活性中心中的丝氨酸反应。TPCK(N-对甲苯磺酰苯丙氨酰氯甲基酮)的专一性更强,只能与糜蛋白酶活性中心的His-57结合,称为亲和标记。它是底物类似物,烷化剂。TLCK(赖氨酸衍生物)作用于胰酶的His-46。某些试剂的专一性不强,可用差示标记法:先用底物类似物保护活性中心,加入修饰剂,与活性中心以外的基团反应,然后除去抑制剂,再加入放射性标记的试剂,此时试剂只能与活性中心的基团反应,测定放射性的位置,即可找到活性中心。

紫外、荧光、园二色光谱等方法也可用与活性中心的研究。在酶与底物结合时,位于底物结合部位的生色团必然会发生某种变化,从而导致其光谱的变化。这些生色团可以是酶本身带有的,也可以人工引入。这种方法可以用来判断活性中心的构成,也可以研究催化的反应过程。最直接最准确的方法是X-射线衍射。

三、同工酶

同工酶是同一生物催化同一反应的不同的酶分子。同工酶的催化作用相同,但其功能意义有所不同。不同种生物有相同功能的酶不是同工酶。同工酶具有相同或相似的活性中心,但其理化性质和免疫学性质不同。同工酶的细胞定位、专一性、活性及其调节可有所不同。每种同工酶都有其独特的功能意义。如乳酸脱氢酶(LDH)是由4个亚基组成的四聚体。亚基有A(M)和B(H)两种,有5种同工酶:LDH1(H4)、LDH2(MH3)、LDH3(M2H2)、LDH4(M3H)、LDH5(M4)。M、H两个亚基由不同基因编码,在不同细胞中合成速度不同,所以在不同的组织器官中5种同工酶的比例不同,经电泳分离后会得到不同的同工酶谱。人体心肌中LDH1和LDH2较多,而骨骼肌中LDH5较多。M亚基对丙酮酸的Km较高,且不受底物抑制,因而肌肉可生成大量乳酸;H亚基的Km小,并受底物抑制,随底物增加很快饱和,所以心脏生成乳酸很少,此酶主要用于乳酸的氧化。临床上通过分析病人血清LDH同工酶谱,有助于诊断病变发生的部位。如心肌损害时血清中LDH1升高;肺损害时LDH3升高。

第三节 酶的催化机制

一、酶与底物的结合

酶与底物结合的作用力主要是氢键、盐键和范德华力。盐键是带电荷基团之间的静电吸引力,疏水基团之间的作用也称为疏水键。

酶与底物的结合是有专一性的,人们曾经用锁和钥匙来比喻酶和底物的关系。这种“锁钥学说”是不全面的。比如,酶既能与底物结合,也能与产物结合,催化其逆反应。于是又提出了“诱导契合学说”,认为当酶与底物接近时,酶蛋白受底物分子的诱导,其构象发生改变,变得有利于与底物的结合和催化。

二、酶加快反应速度的因素

酶加快反应速度主要靠降低反应的活化能,即底物分子达到活化态所需的能量。例如脲酶可使尿素水解反应的活化能由136kj/mol降到46kj/mol,使反应速度提高1014倍。酶的催化机理主要有以下几点:

1.邻近定向 对一个双分子反应,酶可以使两个底物结合在活性中心彼此靠近,并具有一定的取向。这比在溶液中随机碰撞更容易反应。对不同的反应,由分子间反应变成分子内反应后,反应速度可加快100倍到1011倍。

2.底物形变 酶与底物结合时,不仅酶的构象改变,底物的构象也会发生变化。这种变化使底物更接近于过渡态,因此可以降低活化能。

3.酸碱催化和共价催化 酶活性中心的一些残基的侧链基团可以起酸碱催化或共价催化的作用。酸碱催化可分为一般酸碱催化和特殊酸碱催化两种,特殊酸碱催化是指H 和OH-的催化作用;一般酸碱催化还包括其他弱酸弱碱的催化作用。酶促反应一般发生在近中性条件,H 和OH-的浓度很低,所以酶促反应主要是一般酸碱催化。酶分子中的一些可解离集团如咪唑基、羧基、氨基、巯基常起一般酸碱催化作用,其中咪唑最活泼有效。

有些酶有酸碱共催化机制及质子转移通路。四甲基葡萄糖在苯中的变旋反应如果单独用吡啶(碱)或酚(酸)来催化,速度很慢;如果二者混合催化,则速度加快,即酸碱共催化。如果把酸和碱集中在一个分子中,即合成α-羟基吡啶,它的催化速度又加快7000倍。这是因为两个催化集团集中在一个分子中有利于质子的传递。在酶-底物复合物中经常由氢键和共轭结构形成质子传递通路,从而大大提高催化效率。

共价催化可分为亲电催化和亲核催化。丝氨酸蛋白酶、含巯基的木瓜蛋白酶、以硫胺素为辅酶的丙酮酸脱羧酶都有亲核催化作用。羟基、巯基和咪唑基都有亲核催化作用。金属离子和酪氨酸羟基、-NH3 都是亲电基团。共价催化经常形成反应活性很高的共价中间物,将一步反应变成两步或多步反应,绕过较高的能垒,使反应快速进行。例如胰蛋白酶通过丝氨酸侧链羟基形成酰基-酶共价中间物,降低活化能。

4.微环境的作用 有些酶的活性中心是一个疏水的微环境,其介电常数较低,有利于电荷之间的作用,也有利于中间物的生成和稳定。如赖氨酸侧链氨基的pK约为9,而在乙酰乙酸脱羧酶活性中心的赖氨酸侧链pK只有6左右。

以上几点都可加速反应,但每种酶不同,可同时具有其中的几种因素。

第四节 酶促反应的动力学

酶促反应的动力学是研究酶促反应的速度以及影响速度的各种因素的科学。动力学研究既可以为酶的机理研究提供实验证据,又可以指导酶在生产中的应用,最大限度地发挥酶的催化作用。

一、米氏方程

1.米氏方程的推导

米氏学说是1913年Michaelis和Menton建立的,认为反应分为两步,先生成酶-底物复合物(中间产物),再分解形成产物,释放出游离酶。经过Briggs和Haldane的补充与发展,得到了现在的米氏方程。

S+E=SE=P+E

对于上面的反应,首先有三点假设:第一,底物大过量,即[S]》[E]。第二,在反应初期,产物浓度极小,忽略逆反应即k-2=0;第三,稳态假设,即随着反应的进行,复合物的形成速度逐渐降低,分解加快,在某一时刻达到平衡,复合物的浓度为常数,这种状态称为“稳态”。体系达到稳态后,底物的消耗和产物的生成速度都是常数,且相等。经测定,酶加入体系后,在几毫秒之内即可达到稳态,所以我们测定的初速度通常是稳态速度。在产物积累较多之前,体系一直保持稳态,所以反应速度

v=k2[ES]。根据稳态假设,有k1[E][S]=(k-1 k2)[ES],即[ES]=k1[E][S]/(k-1 k2)。定义(k-1 k2)/k1=Km,因为[E]= [E]0-[ES],故[ES]= [E]0[S]/(Km [S])。代入速度方程,得到v= k2[E]0[S]/(Km [S])。因为当[ES]=[E]0时速度最大,所以Vm=k2[E]0。代入,得到下列米氏方程:

v=Vm×[S]/(Km [S])

2.米氏常数的意义

米氏常数的物理意义是反应速度达到最大反应速度一半时的底物浓度。其酶学意义在于,它是酶的特征常数,只与酶的性质有关,与酶浓度无关。不同的酶其Km不同,同种酶对不同底物也不同。在k2极小时1/Km可近似表示酶与底物的亲和力,1/Km越大,亲和力越大。在酶的多种底物中,Km最小的底物叫做该酶的天然底物。

3.米氏常数的测定

从酶的v-[s]图上可以得到Vm,再从1/2Vm处读出[s],即为Km。但实际上只能无限接近Vm,却无法达到。为得到准确的米氏常数,可以把米氏方程加以变形,使它相当于线性方程,通过作图得到准确的米氏常数。

双倒数作图法 将方程改写为

1/v=Km/Vm×1/[S] 1/Vm

实验时在不同的底物浓度测定初速度,以1/v对1/[S]作图,直线外推与横轴相交,横轴截踞为-1/Km,纵轴截踞为1/Vm。此法称为Lineweaver-Burk作图法,应用最广,但实验点常集中在左端,作图不易准确。

Eadie-Hofstee法 将方程改写为

v=-Km×v/[S] Vm

以v对v/[S]作图,直线斜率为-Km。

4.其他动力学参数

Kcat/Km称为酶的专一性常数,它不受非生产性结合与中间产物积累的影响,可以表示酶对相互竞争的几种底物的专一性。生理条件下许多反应的底物浓度是很低的。在底物浓度很低时,v=(Kcat/Km)[E][S],即Kcat/Km是表观二级速度常数。因为Kcat /Km=k3k1/(k2 k3),所以它小于k1,即小于酶和底物复合物生成的速度常数。它不是真实的微观速度常数,只有当反应的限速步骤是酶与底物的相互碰撞时,它才是真实的微观速度常数。扩散限制决定了速度常数的上限是108-109mol-1s-1,碳酸酐酶、磷酸丙糖异构酶、乙酰胆碱酯酶等都接近这一极限,说明他们的进化已经很完善。

反应级数:对于xA yB=p的反应,其速度v=k[A]a[B]b,对底物A是a级,对底物B是b级,整个反应的级数是a b级。反应分子数是指在最慢的一步反应中,参加的最低分子数目。它是指反应机制,必须是整数;而反应级数是通过实验测得的,可以是小数。根据米氏方程,当底物浓度远大于米氏常数时,v=Vm,是零级反应;反之,v=(Vm/Km)[s],是一级反应。而中间部分则是混合级反应。

二、多底物反应的机制

许多酶催化的反应比较复杂,包含一种以上底物,它们的反应按分子数分为几类,单分子称为uni,双分子称为bi,三分子为ter,四分子为quad。较为常见的是双底物双产物反应,称为bi-bi反应:

A B→P Q

目前认为大部分双底物反应可能有三种反应机理:

1.依次反应机理

需要NAD 或NADP 的脱氢酶的反应就属于这种类型。辅酶作为底物A先与酶生成EA,再与底物B生成三元复合物EAB,脱氢后生成产物P,最后放出还原型辅酶NADH或NADPH。

2.随机机理

底物的加入和产物的放出都是随机的,无固定顺序。如糖原磷酸化的反应。

3.乒乓机制

转氨酶是典型的乒乓机制,酶首先与底物A(氨基酸)作用,产生中间产物EA,底物中的氨基转移到辅酶,使辅酶中的磷酸吡哆醛变成磷酸吡哆胺,即EA转变为FP,然后放出产物P(α-酮酸),得到酶F,再与底物B(另一个酮酸)作用,放出产物Q(相应的氨基酸)和酶E。由乙酰辅酶A、ATP和HCO3-三个底物生成丙酰辅酶A的反应也属于乒乓机制。

三、影响反应速度的因素

(一)pH的影响 大部分酶的活力受pH值的影响,在一定的pH值活力最高,称最适pH。一般酶的最适pH在6-8,少数酶需偏酸或碱性条件。如胃蛋白酶最适pH在1.5,而肝精氨酸酶在9.7。

pH影响酶的构象,也影响与催化有关基团的解离状况及底物分子的解离状态。最适pH有时因底物种类、浓度及缓冲溶液成分不同而变化,不是完全不变的。

大部分酶的pH-酶活曲线是钟形曲线,但也有少数酶只有钟形的一半,甚至是直线。如木瓜蛋白酶底物的电荷变化对催化没有影响,在pH4-10之间是一条直线。

(二)温度的影响 酶活随温度变化的曲线是钟形曲线,有一个最高点,即最适温度。温血动物的酶最适温度是35-40度,植物酶在40-50度。这是温度升高时化学反应加速(每升温10℃反应速度加快1-2倍)与酶失活综合平衡的结果。一般酶在60度以上变性,少数酶可耐高温,如牛胰核糖核酸酶加热到100度仍不失活。干燥的酶耐受高温,而液态酶失活快。

最适温度也不是固定值,它受反应时间影响,酶可在短时间内耐受较高温度,时间延长则最适温度降低。

热失活的活化能一般为50-100Kcal/mol,比一般反应的活化能高10倍,在30℃以下是稳定的。

(三)激活剂的影响 凡是能提高酶活性的物质都称为激活剂。大部分激活剂是离子或简单有机化合物。按照分子大小,可分为三类:

1.无机离子 可分为金属离子、氢离子和阴离子三种。起激活剂作用的金属离子有钾、钠、钙、镁、锌、铁等,原子序数在11-55之间,其中镁是多种激酶及合成酶的激活剂。阴离子的激活作用一般不明显,较突出的是动物唾液中的α淀粉酶受氯离子激活,溴的激活作用稍弱。

激活剂的作用有选择性,对另一种酶可能起抑制作用。有些离子还有拮抗作用,如钠抑制钾的激活作用,钙抑制镁。有些金属离子可互相替代,如激酶的镁离子可用锰取代。激活剂的浓度也有影响,浓度过高可能起抑制作用。如对于NADP 合成酶,镁离子浓度在5-10×10-3M时起激活作用,在30×10-3M时酶活下降。

2.中等大小有机分子 某些还原剂如半胱氨酸、还原型谷胱甘肽、氰化物等,能激活某些酶,打开分子中的二硫键,提高酶活,如木瓜蛋白酶、D-甘油醛-3-磷酸脱氢酶等。另一种是EDTA,可螯合金属,解除重金属对酶的抑制作用。

3.蛋白质类 指可对某些无活性的酶原起作用的酶。

(四)抑制剂(inhibitor)的作用

使酶活力下降,但不引起酶蛋白变性的作用称为抑制作用。能引起抑制作用的物质叫做酶的抑制剂。抑制剂与酶分子上的某些必需基团反应,引起酶活力下降,甚至丧失,但并不使酶变性。研究抑制作用有助于对酶的作用机理、生物代谢途径、药物作用机制的了解。抑制作用根据可逆性可分为两类:可逆抑制与不可逆抑制。

1.不可逆抑制(irreversible inhibition) 此类抑制剂通常以共价键与酶结合,不能用透析、超滤等方法除去。按抑制剂的选择性,又可分为专一性与非专一性不可逆抑制剂。前者只能与活性部位的基团反应,后者可与多种基团反应。如对活性部位基团的亲和力比对其他基团大三个数量级,即为专一性抑制剂。有时因作用对象及条件不同,某些非专一性抑制剂会转化,产生专一性抑制作用。常用来判断专一性的方法有:有底物保护现象、有化学计量关系,且作用后酶完全失活、与失活的酶不反应。

常见的不可逆抑制剂有:

²有机磷化合物 可与酶中与酶活直接相关的丝氨酸上的羟基牢固结合,从而抑制某些蛋白酶及酯酶,是专一性抑制剂。此类化合物强烈抑制胆碱酯酶,使乙酰胆碱堆积,引起一系列神经中毒症状,又称为神经毒剂。二战中使用过的DFP及有机磷杀虫剂都属于此类。当有大量底物存在时,底物先与酶的活性部位结合,抑制作用就会减弱,称为底物保护作用。有机磷与酶结合后虽不解离,但有时可用肟化物(含-CH=NOH基)或羟肟酸把酶上的磷酸根除去,使酶恢复活性。临床上用的解磷定(PAM)就是此类化合物。

²有机砷、汞化合物 与巯基作用,抑制含巯基的酶。如对氯汞苯甲酸,可用过量巯基化合物如半胱氨酸或还原型谷胱甘肽解除。砷化物可破坏硫辛酸辅酶,从而抑制丙酮酸氧化酶系统。路易斯毒气(CHCl=CHAsCl2)能抑制几乎所有的巯基酶。砷化物的毒性不能用单巯基化合物解除,可用过量双巯基化合物解除,如二巯基丙醇等。它是临床上重要的砷化物及重金属中毒的解毒剂。

²氰化物 与含铁卟啉的酶(如细胞色素氧化酶)中的Fe2 结合,使酶失活而抑制细胞呼吸。

²重金属 银、铜、铅、汞等盐类能使大多数酶失活,可用螯合剂如EDTA解除。可能是与酶分子中的巯基发生反应,或置换酶中的金属离子。

²烷化剂 主要是含卤素的化合物,如碘乙酸、碘乙酰胺、卤乙酰苯等,是一种非专一性抑制剂,可以烷化巯基,使酶失活。常用于鉴定酶中巯基。

²自杀底物 以潜伏状态存在,与某些酶的活性中心结合后被激活,产生抑制作用。此类抑制剂有高度专一性,只有遇到靶子酶时才转变。也称为Kcat型专一性不可逆抑制剂。另一类专一性不可逆抑制剂称为Ks型,是底物类似物,如TPCK等。

2.可逆抑制 与酶的结合是可逆的,可用透析法除去抑制剂,恢复酶活。根据抑制剂与底物的关系,可逆抑制可分为三种:

(1)竞争性抑制 抑制剂结构与底物类似,与酶形成可逆的EI复合物但不能分解成产物P。抑制剂与底物竞争活性中心,从而阻止底物与酶的结合。可通过提高底物浓度减弱这种抑制。最典型的例子是丙二酸对琥珀酸脱氢酶的抑制。竞争性抑制剂使Km增大,Km'=Km×(1 I/Ki),Vm不变。

竞争性抑制最常见,磺胺类药物就是竞争性抑制剂,如对氨基苯磺胺。它与对氨基苯甲酸相似,可抑制细菌二氢叶酸合成酶,从而抑制细菌生长繁殖。人体可利用食物中的叶酸,而细菌不能利用外源的叶酸,所以对此类药物敏感。抗菌增效剂TMP可增强磺胺的药效,因为其结构与二氢叶酸类似,可抑制细菌二氢叶酸还原酶,但很少抑制人体二氢叶酸还原酶。它与磺胺配合使用,可使细菌的四氢叶酸合成受到双重阻碍,严重影响细菌的核酸及蛋白质合成。

植物中的某些生物碱如毒扁豆碱是胆碱酯酶的竞争性抑制剂,含季铵基团,与乙酰胆碱类似,能抑制胆碱酯酶活力。

(2)非竞争性抑制 酶可以同时与底物和抑制剂结合,两者没有竞争。但形成的中间物ESI不能分解成产物,因此酶活降低。非竞争抑制剂与酶活性中心以外的基团结合,大部分与巯基结合,破坏酶的构象,如一些含金属离子(铜、汞、银等)的化合物。亮氨酸是精氨酸酶的非竞争抑制剂,EDTA络合金属引起的抑制也是非竞争抑制,如对需要镁离子的己糖激酶的抑制。非竞争性抑制使Km不变,Vm变小。

(3)反竞争性抑制 酶与底物结合后才能与抑制剂结合,复合物不能生成产物。反竞争性抑制剂使Km和Vm都变小。

第五节 酶的调节

生物体通过调节酶的功能来控制代谢速度。酶的调节机制有两类,一是对酶数量的调节,另一类是对酶活性的调节。前者通过控制酶的合成与降解速度来控制酶量,作用缓慢而持久,称粗调;后者改变酶的活性,效果快速而短暂,称细调。

一、酶活性的调节

(一)变构调节

1.定义

有些酶在专一性的变构效应物的诱导下,结构发生变化,使催化活性改变,称为变构酶或别构酶(allosteric enzyme)。使酶活增加的效应物称为正调节物,反之称为负调节物。变构酶是寡聚酶,分子中除活性中心外还有别构中心(调节中心)。两个中心可在同一亚基,也可在不同亚基。有活性中心的亚基称为催化亚基,有别构中心的亚基称为调节亚基。别构效应也可扩展到非酶蛋白,如血红蛋白与氧结合的过程中也有别构效应。

2.分类

大部分别构酶的v-[S]曲线呈S形,与米氏酶不同。这种曲线表明酶与一分子底物(或效应物)分子结合后,其构象发生改变,有利于后续分子的结合,称为正协同效应。这种现象有利于对反应速度的调节,在未达到最大反应速度时,底物浓度的略微增加,将使反应速度有极大提高。所以正协同效应使酶对底物浓度的变化极为敏感。

另一类别构酶具有负协同效应,其动力学曲线类似双曲线,在底物浓度较低时反应速度变化很快,但继续下去则速度变化缓慢。所以负协同效应使酶对底物浓度变化不敏感。

3.判断

有一些没有别构效应的酶也可产生类似的曲线,所以作图法不能完全作为判断别构酶的依据。可用Rs值(saturation ratio,饱和比值)([S]90%V/[S]10%V)来定量地区分三种酶:Rs等于81为米氏酶,大于81则有正协同效应,反之为负协同。更常用的是Hill系数法,以log(v/(Vm-v))对log[S]作图,曲线的最大斜率h称为Hill系数,米氏酶等于1,正协同酶大于1,负协同小于1。

4.机

齐变模型(M. W. C.):认为酶分子中所有原子的构象相同,无杂合状态。在低活性的紧张态(tight,T)和高活性的松弛态(relaxed form,R)之间存在平衡,效应物使平衡移动,从而改变酶的活性。此模型不适于负协同的酶。

序变模型(K.N.F.):认为各个亚基可以杂合存在,变构是由于配体的诱导,而不是因为平衡的移动。协同性取决于与配体结合的亚基对空位亚基的影响。此模型对两种酶都适用。

5.举例

(1)天冬氨酸转氨甲酰酶(ATCase):

这是嘧啶合成途径的第一个酶,受到CTP的反馈抑制,可被ATP激活。Asp、氨甲酰磷酸均有正同促效应,CTP有异促效应,可使酶的S形程度增大,即Rs值减小,CTP之间具有正协同作用,n=3。ATP使Rs增大,当达到饱和时即成为双曲线。ATP和CTP都只改变酶的亲和力,而不影响Vm。琥珀酸是天冬氨酸的类似物,在天冬氨酸浓度高时是竞争性抑制剂,而当天冬氨酸不足时则可模拟天冬氨酸的正调控变构作用而成为激活剂。

此酶共12个亚基,其中催化和调节亚基各6个。分子结构为2个C3中间夹着3个R2,活性中心位于两个催化亚基中间。别构中心位于调节亚基的远端,通过变构影响催化亚基的活性。

(2)磷酸甘油醛脱氢酶GDP

共四个亚基,Km1和Km2都较小,易与NAD+结合,即在低底物浓度时反应较快;而Km3则增大了100倍,很难与NAD+反应。这是由构象变化引起的。在生物体内,当NAD+不足时可以保证酵解的进行,而当过NAD+多时则供给其它反应,避免造成酸中毒。

(二)共价调节

这种调节是通过酶促共价修饰使其在活性形式与非活性形式之间转变。最典型的例子是动物组织的糖原磷酸化酶,它催化糖原分解产生葡萄糖-1-磷酸。这个酶有两种形式:高活性的磷酸化酶a和低活性的磷酸化酶b。前者是四个亚基的寡聚酶,每个亚基含有一个磷酸化的丝氨酸残基。这些磷酸基是活性必需的,在磷酸化酶磷酸酶的作用下可水解除去,变成两个低活性的半分子:磷酸化酶b。磷酸化酶b在磷酸化酶激酶的催化下又可以接受ATP的磷酸基变成磷酸化酶a。

共价调节酶可以将化学信号放大。一分子磷酸化酶激酶可以在短时间内催化数千个磷酸化酶b,每个产生的磷酸化酶a又可催化产生数千个葡萄糖-1-磷酸,这样就构成了两步的级联放大。实际上这是肾上腺素使糖原急剧分解的更长的级联放大的一部分。

另一类共价调节酶是大肠杆菌谷氨酰胺合成酶等,它们接受ATP转来的腺苷酰基的共价修饰,或酶促脱去腺苷酰基而调节活性。此外,酶原的激活也是一种共价调节。

(三)酶原(proenzyme; zymogen)激活

消化道分泌的蛋白酶往往以无活性的酶原形式分泌,到达目的地时才被激活。这样可以避免对消化腺的水解。

胰凝乳蛋白酶原先被胰蛋白酶切割,产生π-胰凝乳蛋白酶,π-胰凝乳蛋白酶活性高,但不稳定,自相切割产生活性较低但稳定的α-胰凝乳蛋白酶。酶原激活后构象发生变化,形成疏水口袋,即有活性的酶。

胃蛋白酶原中已形成完整的活性中心,但酶原中有一段碱性序列与活性中心形成盐桥,将活性中心堵塞。在pH5以下时,酶原可自动激活,失去44个残基的前体片段。激活的酶还可再激活其它酶原。

胰蛋白酶原可被肠激酶激活,然后激活胰凝乳蛋白酶原、胰蛋白酶原、弹性蛋白酶原及羧肽酶原。所以胰蛋白酶是胰脏蛋白酶原的共同激活剂。

酶原激活有时会切掉很多残基,如牛羧肽酶B激活时要从505个残基中切掉约200个残基。

(四)激促蛋白和抑制蛋白

钙调蛋白(C AM)与钙离子结合后可以结合到许多酶上,将其激活。视觉激动过程中的一个酶含有抑制亚基,当这个亚基可逆释放时,酶的活性增加。

二、酶含量的调节

(一)合成速度的调节

有一类酶称为诱导酶,是在细胞经特定诱导物诱导产生的。它的含量在诱导物存在下显著增高。诱导物一般是其底物或类似物。其他含量基本不变的酶称为结构酶。诱导酶在微生物中较多见,如大肠杆菌的半乳糖苷酶,在培养基中加入乳糖,则诱导产生,使细菌能利用乳糖。

结构酶和诱导酶的区分是相对的,只是数量的区别,不是本质的区别。酶的合成受基因和代谢物的双重控制。基因是形成酶的内因,但酶的形成还受代谢物的调控,诱导物可增加酶量,酶的产物也能产生阻遏作用,使酶的生成量大大减少。也就是说,代谢物可以控制酶的生成速度和数量。

(二)降解的控制

酶量还可通过加快或减慢酶分子的降解来调节,如在饥饿时,肝脏中的精氨酸酶降解速度减慢,酶量增多;乙酰辅酶A羧化酶降解加快,酶量减少。

本 章 考 点

本 章 名 词 解 释

(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。比活是酶纯度的测量。活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km [s])米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而υmax不变。非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶。别构调节剂(allosteric modulator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。别构调节酶(allosteric modulator):那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。

第六章 核 酸

提要

一.概述

核酸分类 分布与功能

二.核苷酸

碱基 嘌呤与嘧啶 DNA与RNA中的核苷与核苷酸 多磷酸核苷酸 环核苷酸

三.DNA的结构

磷酸二酯键 DNA的一级结构 DNA的二级结构 DNA的三级结构 DNA的拓扑结构

四.RNA的结构

DNA与RNA的区别 RNA的种类与功能 tRNA的结构特点 mRNA的结构特点

五.核酸的理化性质

紫外吸收 DNA的变性与复性 限制性内切酶

第一节 概述一发现

核酸占细胞干重的5-15%,1868年被瑞士医生Miescher发现,称为“核素”。在很长时间内,流行“四核苷酸假说”,认为核酸是由等量的四种核苷酸构成的,不可能有什么重要功能。

1944年Oswald Avery通过肺炎双球菌的转化实验首次证明DNA是遗传物质。正常肺炎双球菌有一层粘性发光的多糖荚膜,有致病性,称为光滑型(S型);一种突变型称为粗糙型(R型),无荚膜,没有致病能力(缺乏UDP-葡萄糖脱氢酶)。1928年,格里菲斯发现肺炎双球菌的转化现象,即将活的粗糙型菌和加热杀死的光滑型菌混合液注射小鼠,可致病,而二者单独注射都无致病性。这说明加热杀死的光滑型菌体内有一种物质使粗糙型菌转化为光滑型菌。艾弗里将加热杀死的光滑型菌的无细胞抽提液分级分离,然后测定各组分的转化活性,于1944年发表论文指出“脱氧核糖型的核酸是型肺炎球菌转化要素的基本单位”。

其实验证据如下:

1.纯化的、有高度活性的转化要素的化学元素分析与计算出来的DNA组成非常接近。

2.纯化的转化要素在光学、超速离心、扩散和电泳性质上与DNA的相似。

3.其转化活性不因抽取去除蛋白质或脂类而损失。

4.用胰蛋白酶和糜蛋白酶处理不影响其转化活性。

5.用RNA酶处理也不不影响其转化活性。

6. DNA酶可使其转化活性丧失。

艾弗里的论文发表后,有些人仍然坚持蛋白质是遗传物质,认为他的分离不彻底,是混杂的微量的蛋白质引起的转化。1952年,Hershey和Chase的T2噬菌体旋切实验彻底证明遗传物质是核酸,而不是蛋白质。他们用35S标记蛋白质,用32P标记核酸。用标记的噬菌体感染细菌,然后测定宿主细胞的同位素标记。当用硫标记的噬菌体感染时,放射性只存在于细胞外面,即噬菌体的外壳上;当用磷标记的噬菌体感染时,放射性在细胞内,说明感染时进入细胞的是DNA,只有DNA是连续物质,所以说DNA是遗传物质。

1956年,Fraenkel Conrat的烟草花叶病毒(TMV)重建实验证明,RNA也可以作为遗传物质。把TMV在水和酚中震荡,使蛋白质与RNA分开,然后分别感染烟草,只有RNA可以使烟草感染,产生正常后代。

1953年DNA的双螺旋结构模型建立,被认为是本世纪自然科学的重大突破之一。由此产生了分子生物学、分子遗传学、基因工程等学科和技术,此后的30年间,核酸研究共有15次获得诺贝尔奖,占总数的1/4,可见核酸研究在生命科学中的重要地位。

二、核酸的分类

核酸是由核苷酸组成的大分子,分子量最小的是转运RNA,分子量25kd左右;人类染色体DNA分子量高达1011kd。核酸分为DNA和RNA两类,DNA主要集中在细胞核中,在线粒体和叶绿体中也有少量DNA。RNA主要分布在细胞质中。对病毒来说,或只含DNA,或只含RNA。因此可将病毒分为DNA病毒和RNA病毒。

核酸可分为单链(single strand,ss)和双链(double strand,ds)。DNA一般为双链,作为信息分子;RNA单双链都存在。

第二节 核苷酸一、核苷酸的结构

核苷酸可分解成核苷和磷酸,核苷又可分解为碱基和戊糖。因此核苷酸由三类分子片断组成。戊糖有两种,D-核糖和D-2-脱氧核糖。因此核酸可分为两类:DNA和RNA。

(一)碱基(base)

核酸中的碱基分为两类:嘌呤和嘧啶。

1.嘧啶碱(pyrimidine,py) 是嘧啶的衍生物,共有三种:胞嘧啶(cytosine,Cyt)、尿嘧啶(uracil,Ura)和胸腺嘧啶(thymine,Thy)。其中尿嘧啶只存在于RNA中,胸腺嘧啶只存在于DNA中,但在某些tRNA中也发现有极少量的胸腺嘧啶。胞嘧啶为两类核酸所共有,在植物DNA中还有5-甲基胞嘧啶,一些大肠杆菌噬菌体核酸中不含胞嘧啶,而由5-羟甲基胞嘧啶代替。因为受到氮原子的吸电子效应影响,嘧啶的2、4、6位容易发生取代。

2.嘌呤碱(purine,pu) 由嘌呤衍生而来,常见的有两种:腺嘌呤(adenine,Ade)和鸟嘌呤(guanine,Gua)。嘌呤分子接近于平面,但稍有弯曲。自然界中还有黄嘌呤、次黄嘌呤、尿酸、茶叶碱、可可碱和咖啡碱。前三种是嘌呤核苷酸的代谢产物,是抗氧化剂,后三种含于植物中,是黄嘌呤的甲基化衍生物,具有增强心脏功能的作用。

此外,一些植物激素,如玉米素、激动素等也是嘌呤类物质,可促进细胞的分裂、分化。一些抗菌素是嘌呤衍生物。如抑制蛋白质合成的嘌呤霉素,是腺嘌呤的衍生物。

生物体中(A T)/(G C)称为不对称比率,不同生物有所不同。比如人的不对称比率为1.52,酵母为79,藤黄八叠球菌为0.35。

3.稀有碱基 除以上五种基本的碱基以外,核酸中还有一些含量极少的稀有碱基,其中大多数是甲基化碱基。甲基化发生在核酸合成以后,对核酸的生物学功能具有重要意义。核酸中甲基化碱基含量一般不超过5%,但tRNA中可高达10%。

(二)核苷

核苷是戊糖与碱基缩合而成的。糖的第一位碳原子与嘧啶的第一位氮原子或嘌呤的第九位氮原子以糖苷键相连,一般称为N-糖苷键。戊糖是呋喃环,C1是不对称碳原子,核酸中的糖苷键都是β糖苷键。碱基与糖环平面互相垂直。糖苷的命名是先说出碱基名称,再加“核苷”或“脱氧核苷”。

在tRNA中含有少量假尿嘧啶核苷(用Ψ表示),它的核糖与嘧啶环的C5相连。

规定用三字母符号表示碱基,用单字母符号表示核苷,前面加d表示脱氧核苷。戊糖的原子用带’的数字编号,碱基用不带’的数字编号。

(三)核苷酸

核苷中的戊糖羟基被磷酸酯化,就形成核苷酸。核糖核苷的糖环上有三个羟基,可形成三种核苷酸:2’、3’和5’-核糖核苷酸。脱氧核糖只有3’和5’两种。生物体内游离存在的多是5’核苷酸。用碱水解RNA可得到2’和3’核糖核苷酸的混合物。

稀有碱基也可形成相应的核苷酸。在天然DNA中已找到十多种脱氧核糖核苷酸,在RNA中找到了几十种核糖核苷酸。

(四)多磷酸核苷酸

细胞内有一些游离的多磷酸核苷酸,它们具有重要的生理功能。5’-NDP是核苷的焦磷酸酯,5’-NTP是核苷的三磷酸酯。最常见的是5’-ADP和5’-ATP。ATP上的磷酸残基由近向远以αβγ编号。外侧两个磷酸酯键水解时可释放出7.3千卡能量,而普通磷酸酯键只有2千卡,所以被称为高能磷酸键(~P)。因此ATP在细胞能量代谢中起极其重要的作用,许多化学反应需要由ATP提供能量。高能磷酸键不稳定,在1NHCl中,100℃水解7分钟即可脱落,而α磷酸则稳定得多。利用这一特性可测定ATP和ADP中不稳定磷的含量。

细胞内的多磷酸核苷酸常与镁离子形成复合物而存在。GTP,CTP,UTP在某些生化反应中也具有传递能量的作用,但不普遍。UDP在多糖合成中可作为携带葡萄糖的载体,CDP在磷脂的合成中作为携带胆碱的载体。各种三磷酸核苷酸都是合成DNA或RNA的前体。

鸟嘌呤核苷四磷酸酯和五磷酸酯在代谢调控中起作用,在大肠杆菌中,它们参与rRNA合成的控制。

(五)环化核苷酸

磷酸同时与核苷上两个羟基形成酯键,就形成环化核苷酸。最常见的是3',5'-环化腺苷酸(cAMP) 和cGMP。它们是激素作用的第二信使,起信号传递作用。可被磷酸二酯酶催化水解,生成相应的5'-核苷酸。

二、有关缩写符号

碱基用三字母符号表示,核苷用大写单字母符号表示,前面加d表示脱氧核苷。戊糖的原子用带’的数字编号,碱基用不带’的数字编号。

稀有核苷(修饰核苷)也用单字母符号表示,如D表示二氢尿嘧啶核苷,T表示胸苷。如果碱基上有修饰基团,就在表示核苷的大写字母前加上代表修饰基团的小写字母,在这个小写字母的右上方写明修饰位置,右下方写明修饰基团的数量(如只有一个可省略)。如m2G表示2-N-甲基鸟苷,m2,2,73G表示N2,N2,7-三甲基鸟苷,S4U表示4-硫代尿苷。核糖上的修饰基团写在表示核苷的大写字母右边,如Cm表示2'-O-甲基胞苷。

核苷酸可在核苷符号旁加小写p表示,写在左边表示5'核苷酸,写在右边表示3'核苷酸。写几个就表示几个磷酸。3',5'-环化核苷酸可在前面加小写c,2',3'-环化核苷酸可在核苷符号后加〉P,如U〉P表示2',3'-环化尿苷酸。

三、核苷酸的功能

1.作为核酸的成分。

2.为需能反应提供能量。UTP用于多糖合成,GTP用于蛋白质合成,CTP用于脂类合成,ATP用于多种反应。

3.用于信号传递。如cAMP、cGMP是第二信使。

4.参与构成辅酶。如NAD、FAD、CoA等都含有AMP成分。

5.参与代谢调控。如鸟苷四磷酸等可抑制核糖体RNA的合成。又如反义RNA。

第三节 DNA的结构 

一、DNA的一级结构

1.定义

DNA是由成千上万个脱氧核糖核苷酸聚合而成的多聚脱氧核糖核酸。它的一级结构是它的构件的组成及排列顺序,即碱基序列。

2.结构

在DNA分子中,相邻核苷酸以3’,5’-磷酸二酯键连接构成长链,前一个核苷酸的3’-羟基与后一个核苷酸的5’-磷酸结合。链中磷酸与糖交替排列构成脱氧核糖磷酸骨架,链的一端有自由的5’-磷酸基,称为5’端;另一端有自由3’-羟基,称为3’端。在DNA中,每个脱氧核糖连接着碱基,碱基的特定序列携带着遗传信息。

3.书写

书写DNA时,按从5’向3’方向从左向右进行,并在链端注明5’和3’,如5’pApGpCpTOH3’。也可省略中间的磷酸,写成pAGCT。这是文字式缩写。还有线条式缩写,用竖线表示戊糖,1'在上,5'在下。

二、DNA的二级结构

(一)双螺旋结构的建立

DNA双螺旋结构的阐明,是本世纪最重大的自然科学成果之一。在40年代,人们已经发现脱水DNA的密度很高,X射线衍射表明DNA中有0.34nm和3.4nm的周期性结构。1950年,Chargaff通过对碱基的分析发现了互补配对规律:在任何DNA中,A=T,G=C,所以有A G=T C。

1953年Watson和Crick根据Wilkins的DNAX-射线衍射数据和碱基组成规律,建立了DNA的双螺旋结构模型,从而揭开了现代分子生物学的序幕。当年Watson只有24岁,在剑桥Cavendish实验室进修,他在美国时就认识到核酸的重要性,所以在大家都在研究蛋白质时致力于核酸研究,从而得到了划时代的成果。

Watson和Crick阐明的是B-DNA结晶的结构模型,与细胞内存在的DNA大体一致。近年来又发现,局部DNA还可以其他双螺旋或三螺旋的形式存在。

(二)B-DNA双螺旋结构的要点

1.基本结构

DNA双螺旋是由两条反向、平行、互补的DNA链构成的右手双螺旋。两条链的脱氧核糖磷酸骨架反向、平行地按右手螺旋走向,绕一个共同的轴盘旋在双螺旋的外侧,两条链的碱基一一对应互补配对,集中地平行排列在双螺旋的中央,碱基平面与轴垂直。DNA双螺旋中的两条链互为互补链。

2.基本数据

双螺旋外径2nm,螺距3.4nm,每10对碱基上升一圈。因此每对碱基距离0.34nm,夹角36度。

3. 作用力

有两种作用力稳定双螺旋的结构。在水平方向是配对碱基之间的氢键,A=T对形成两个氢键,GC对形成三个氢键。这些氢键是克服两条链间磷酸基团的斥力,使两条链互相结合的主要作用力。在垂直方向,是碱基对平面间的堆积力。堆积力是疏水力与范德华力的共同体现。氢键与堆积力两者本身都是一种协同性相互作用,两者之间也有协同作用。

4.大小沟

脱氧核糖磷酸骨架并未将碱基对完全包围起来,在双螺旋表面有两个与双螺旋走向一致的沟,一个较深较宽,称大沟;一个较窄较浅,称小沟。大沟一侧暴露出嘌呤的C6、N7和嘧啶的C4、C5及其取代基团;小沟一侧暴露出嘌呤的C2和嘧啶的C2及其取代基团。因此从两个沟可以辨认碱基对的结构特征,各种酶和蛋白因子可以识别DNA的特征序列。

5.修正

以上模型是DNA的平均特征,由于碱基序列的影响,在局部会有所差异。如两个核苷酸之间的夹角可以从28度到42度不等,互补配对的碱基之间有一定夹角,称为螺旋桨状扭曲。螺旋一圈含有10.4个碱基对。

(三)DNA的其他结构

DNA纤维在92%的相对湿度下可形成B-DNA。DNA钠盐、钾盐或钙盐在75%的相对湿度下可形成A型结构,它也是右手螺旋,但碱基略有倾斜(19度),螺距和骨架结构也稍有不同,每匝11个碱基对,短粗。其生物学意义在于它与双链RNA及DNA-RNA杂合体在溶液中的构象极其相似。由于2’-羟基的存在,RNA不易采取B型构象,所以在转录时,DNA要采取A型构象。一些有机溶剂和蛋白质可将B型DNA变成A型构象。

在66%相对湿度的DNA锂盐纤维中发现有C型结构。可以认为C型构象在浓盐溶液和乙二醇溶液中发生。此时堆积力降低,氢键结合能量相对增加。C型结构也是右手螺旋,存在于染色质和某些病毒中。此外还有D型及被称为T和P的两种亚稳态结构。富含A-T对的DNA区域有较大的结构多样性。

DNA还有左手螺旋,即Z-DNA。其骨架呈锯齿走向,在嘌呤与嘧啶交替排列的寡聚DNA中发现,也是反平行互补的双螺旋,每匝12个碱基对,螺旋细长。这说明DNA的碱基序列不仅储存遗传信息,也储存了自身高级结构的信息。Z-DNA作为特殊的结构标志,与基因表达的调控有关。

三、DNA的三级结构

(一)超螺旋

DNA的三级结构是指双螺旋的进一步扭曲。其基本形式是超螺旋,即螺旋的螺旋。三级结构决定于二级结构。B-DNA以每10个碱基一圈盘绕时能量最低,处于伸展状态;当盘绕过多或不足时,就会出现张力,形成超螺旋。盘绕过多时形成正(右手)超螺旋,不足时为负超螺旋。因为超螺旋是在双螺旋的张力下形成的,所以只有双链闭合环状DNA和两端固定的线形DNA才能形成超螺旋,有切口的DNA不能形成超螺旋。无论是真核生物的双链线形DNA,还是原核生物的双链环形DNA,在体内都以负超螺旋的形式存在,密度一般为100-200bp一圈。DNA形成负超螺旋是结构与功能的需要。

(二)高级结构的动态变化

在细胞内DNA的高级结构是变化的。通过多种蛋白因子和酶的作用,改变DNA的二级结构和三级结构,是生物功能的需要。DNA的复制、转录、重组、修复,都伴随着其高级结构的变化。在生物体内,改变高级结构有以下三种方法:

在解链酶的作用下,破坏碱基对间的氢键,使DNA局部解链成为单链区,以增加未解链的双链区的盘绕数,从而增加正超螺旋或减少负超螺旋。

通过局部形成Z-DNA(左手)双螺旋,也可增加B-DNA部分的盘绕数,减少负超螺旋。

通过拓扑异构酶切断DNA的一条或两条链,在双螺旋张力的推动下,使断端绕互补链旋转,释放张力后再连接,可消除超螺旋,也可引入超螺旋。

DNA的拓扑结构有公式如下:

L=T W

其中L称为连环数,是一条链以右手螺旋绕另一条链缠绕的次数,必须是整数。缠绕数T是双螺旋周数,W是超螺旋数。T、W可以是小数。超螺旋密度一般在-0.03到-0.09之间。

(三)超螺旋的多层次性

真核生物的染色体是DNA与蛋白质的复合体,其中DNA的超螺旋结构是多层次的。染色体由染色质细丝经过多次卷曲而成。染色质细丝由核小体重复单位构成串珠状结构。核小体由DNA和组蛋白组成。组蛋白是富含精氨酸和赖氨酸的碱性蛋白,有H1、H2A、H2B、H3和H4共5种。后四种各2分子组成核小体的蛋白核心,约140bp双螺旋DNA(核心DNA)在蛋白核心外绕行1.75圈,共同构成核小体的核心颗粒。核心颗粒之间有约60bp的连接DNA。1分子组蛋白H1结合在连接DNA的进出部位,将核心DNA固定在核心蛋白外围。核小体呈扁球形,高约6nm,直径约11nm。由核心DNA与连接DNA构成的核小体重复单位包括约200bp,长度由68nm压缩至11nm。所以第一次超螺旋使直径2nm的DNA双螺旋变成直径11nm的染色质细丝,长度压缩6-7倍。染色体细丝经过再一次超螺旋,形成直径30nm的染色体粗丝,长度又压缩6倍。第三次超螺旋使粗丝盘绕成直径400nm的单位纤维,长度压缩40倍。最后由单位纤维折叠形成染色单体,长度压缩4-5倍。这样,经过4次超螺旋,DNA的长度压缩了近万倍(8400倍)。

第四节 RNA的结构 

一、RNA的结构特点

1. RNA分子是一条单链。可以回折,自身互补配对,形成发夹或称为茎环结构。形成局部A螺旋至少要有4-6个碱基对。某些分子中回折可占50%。

2. RNA分子中的核糖有2'-羟基,但不用于成键。

3.以尿嘧啶代替胸腺嘧啶,含有多种稀有碱基。

4. RNA是DNA部分序列的转录产物,分子量小得多。有些病毒含有RNA复制酶,可以催化以RNA为模板的RNA合成,即RNA的复制。

5. RNA是多拷贝的。

6.RNA按功能分为三类:转运RNA(tRNA)、信使RNA(mRNA)和核糖体RNA(rRNA)。此外还有snRNA和hnRNA。前者与RNA的加工有关,后者是mRNA的前体。

二、转运RNA

(一)一级结构

转运RNA是小分子,一般由74-93个核苷酸构成,分子量在25kd上下,沉降系数4s。其功能是转运氨基酸,按照信使RNA的碱基序列合成蛋白质。20种氨基酸都有专一的转运RNA,有的还有2种或多种转运RNA。原核生物有30-40种tRNA,真核生物有50-60种或更多。有报道说有一种RNA(tRNASer)可专一转运硒代半胱氨酸,可识别UGA(终止密码)。

tRNA是修饰成分最多的核酸。已经发现的约70种修饰成分中,有50种存在于tRNA中。每个tRNA分子都有修饰成分,有的多达十几个,占全部构件的20%。修饰成分包括修饰碱基和修饰核苷,都是转录后由4种标准碱基或核苷加工修饰而成的。在tRNA分子中,修饰碱基主要是甲基化碱基,修饰核苷主要是假尿嘧啶核苷。

(二)tRNA的二级结构

单链的RNA借部分序列互补结合,可以形成确定的二级结构。维持二级结构的作用力也是氢键和堆积力。RNA分子二级结构的基本单元是发夹结构。RNA链通过自身回折,两段互补序列配对形成一段双螺旋,两段之间未配对的碱基形成突环。由双螺旋和突环(loop)构成了发夹结构(hair pin)。回折比例高,结构稳定。

tRNA分子都有由一个臂和三个发夹构成的三叶草形二级结构。tRNA链的5’端与3’端序列构成的双螺旋区称为氨基酸臂,其3’末端都有不变的单链CCAOH,因末端A结合氨基酸而得名。三个发夹依次由二氢尿嘧啶环(DHU loop)与DHU茎、反密码子环与反密码子茎、TψC环与TψC茎组成。反密码子环中央的三个碱基构成反密码子,与信使RNA的密码子配对。有些tRNA在反密码子茎与TψC茎之间有一个额外的、长度不一的可变茎。

(三)tRNA的三级结构

tRNA分子在二级结构的基础上进一步扭曲形成确定的三级结构。各种tRNA的三级结构都象一个倒置的L。分子的右上端是氨基酸臂,下端是反密码子。两端距离约8nm。不同tRNA的精细结构不同,能被专一的氨基酸tRNA连接酶和有关的蛋白因子识别。

三、核糖体RNA

高等动物核糖体有4种rRNA成分:18s、28s、5.8s、5s,他们与80多种蛋白质共同构成真核生物的核糖体(80s)。核糖体可分解为大小两个亚基,小亚基(40s)由18s rRNA和33种蛋白构成,大亚基由28s、5s、5.8s rRNA和49种蛋白构成。原核生物核糖体(70s)由三种rRNA与50多种蛋白质构成,大亚基(50s)包括23s、5s rRNA和34种蛋白,小亚基(30s)包括16s rRNA和21种蛋白。

多种rRNA的一级结构已经测出。rRNA只含少量修饰成分,主要是甲基化核苷酸,包括m7G、m6G等修饰碱基和各种2’-O-甲基修饰核苷。

同种rRNA的二级结构具有共同特点。

四、信使RNA

mRNA作为指导合成蛋白质的模板,具有种类多、拷贝少、寿命短、修饰成分少的特点。mRNA的主体序列是编码区,在其上游5’侧和下游都有非编码区。真核生物mRNA分子两端还有5’帽子和3’尾部结构。原核细胞一般没有尾,某些真核病毒有。

最简单的帽子结构是掉转方向的7-甲基鸟苷三磷酸,它与mRNA原来的5’端核苷酸借5’ppp5’连接形成m7GpppN。较复杂的帽子结构在后面的一个或两个核苷酸还有2’-O-甲基修饰。帽子结构的通式可写为m7GpppN(m)pN(m)……。帽子结构对稳定mRNA及其翻译具有重要意义,它将5’端封闭起来,可免遭核酸外切酶水解;还可作为蛋白合成系统的辨认信号,被专一的蛋白因子识别,从而启动翻译过程。

5’非编码区是帽子与编码区起始密码子之间的一段较短的序列,其中包括标志翻译起始的序列,如原核生物的SD序列。编码区由起始密码子AUG开始,到终止密码子(UAG、UGA、UAA)截止,编码一种蛋白质的一级结构。其中每三个碱基构成一个密码子,编码一个氨基酸。3’侧非编码区是终止密码子以后的转录序列,其中包括AAUAAA一段序列,可能是添加3’尾的标志,也可能是翻译终止的协调信号。3’端尾部是一段多聚A尾。成熟的mRNA一般在它的3’端都加上了长度为20-200碱基的多聚A尾,作为核膜孔转运系统的标志,与成熟的mRNA通过核膜孔被运到胞浆有关。

第五节 核酸的理化性质 

一、粘度

大分子溶液比普通溶液粘度大,线形大分子又比球形大分子粘度大。DNA是线形大分子,人类二倍体DNA总量3.3×109bp,全长可达1.75米,DNA分子平均长度在4cm以上,而双螺旋直径只有2nm,长度与直径之比高达107。因此,DNA粘度极高,也极易在机械力作用下折断。双链DNA解链成为单链DNA时,由较伸展的双螺旋变成较紧凑的线团结构,粘度明显下降。RNA因为分子量小,且呈线团结构,所以其粘度低得多。

二、密度

利用密度梯度离心可以测定大分子的浮力密度。CsCl溶解度大,可制成8M溶液。DNA的浮力密度一般在1.7以上,RNA为1.6,蛋白质为1.35-1.40。分子量相同结构不同的DNA沉降系数不同,线形双螺旋DNA、线形单链DNA、超螺旋DNA沉降系数之比为1:1.14:1.4。因此通过测定沉降系数可以了解DNA的结构及其变化。

三、紫外吸收

嘌呤和嘧啶因其共轭体系而有 强紫外吸收。核酸在260nm有紫外吸收峰,蛋白质在280nm。利用紫外吸收可测定核酸的浓度和纯度。一般测定OD260/OD280,DNA=1.8,RNA=2.0。如果含有蛋白质杂质,比值明显下降。不纯的核酸不能用紫外吸收法测定浓度。紫外吸收改变是DNA结构变化的标志,当双链DNA解链时碱基外露增加,紫外吸收明显增加,称为增色效应。双链、单链DNA与核苷酸的紫外吸收之比是1:1.37:1.6。

四、DNA的变性

在一定条件下,双链DNA解链变成单链DNA的现象称为变性或熔化。加热引起的变性称为热变性;碱性条件(pH>11.3)下,DNA发生碱变性。此外,尿素、有机溶剂、甚至脱盐都可引起DNA变性。除去变性因素后,互补的单链DNA又可以重新结合为双链DNA,称为复性或退火。DNA复性由局部序列配对形成双链核心的慢速成核反应开始,然后经过快速的所谓拉链反应而完成。

DNA变性后粘度降低,密度和吸光度升高。

变性后的单链DNA与具有同一性序列的DNA链或RNA分子结合形成双链的DNA-DNA或DNA-RNA杂交分子的过程称为杂交或分子杂交。分子杂交技术的发展和应用,对分子生物学和生物高技术的发展起到了重要的推动作用。

通常将50%DNA分子变性时的温度称为熔点(Tm)。一般DNA在生理条件下的熔点在85-95度之间。熔点主要取决于碱基组成,G-C对含量越高,熔点越高。一般G-C对含量40%时熔点是87度,每增加1%,熔点增加约0.4度。离子强度也有影响,因为离子能与DNA结合,使其稳定,所以离子强度越低,熔点越低,熔解范围越窄。因此DNA应保存在高盐溶液中。如果DNA不纯,则变性温度范围也会扩大。甲酰胺可以使碱基对之间的氢键不稳定,降低熔点。所以分子生物实验中经常用甲酰胺使DNA变性,以避免高温引起DNA断裂。乙醇、丙酮、尿素等也可促进DNA变性。

DNA的复性速度与其初始浓度C0及复杂度有关。当温度、离子强度等其他条件固定时,一半DNA复性时的C0t值只与其复杂度有关,可用来计算基因组的复杂度。

五、限制性内切酶

限制性内切酶II识别并切割特定的回文序列,生物体用来防止外源DNA的影响,在基因工程中用于DNA的切割,被称为分子手术刀。如EcoRI,E是属名,co是种名,R是菌株名,I是发现次序。

六、核酸的提纯

提取:一般先破碎细胞,得到DNP或RNP。然后用酚-氯仿除蛋白,用乙醇或异丙醇将核酸沉淀出来,干燥后再溶解即可。

纯化:常用电泳或层析。PAGE一般用于分离1K以下的核酸,如测序。较大的要用琼脂糖电泳。纯化mRNA常用oligo-dT的层析柱或磁珠。

目前核酸研究的特点

八十年代以后,核酸研究有以下特点:

1. RNA研究受到重视。以前的研究以DNA为重点,现在RNA成为研究热点。核糖酶的发现和RNA的加工编辑机制是两大发现。一个基因在不同组织或不同生理状态下,从不同转录起始位点开始转录,通过不同的剪接方式和不同的3’端成熟机制,可形成不同的蛋白质,这是一种比基因重排更灵活的调控方式。RNA的应用也日益广泛,如用ribozyme切割病毒核酸,用反义RNA阻断有害基因的表达等。因此,有人称90年代为RNA的十年。

2.研究材料从原核走向真核。真核生物的复制、转录、翻译都比原核复杂得多,材料的改变导致了ribozyme、RNA的剪接、编辑等重大发现,大大推动了核酸的研究。

3.研究核酸与核酸、核酸与其他生物大分子的相互作用。生物体内的核酸多数处于各种复合物中,其结构与功能都与复合物相关。真核基因转录调控的研究主要集中在顺式作用元件(cis-acting elements)、反式作用因子(trans-acting factor)、以及它们之间的相互作用上。核糖体的结构与功能、氨酰tRNA的合成一直是研究核酸与蛋白质相互作用的两个重要对象,近来又形成剪接体(spliceo-some)、核不均一核糖核蛋白体(hn-RNP)、核小分子核糖核蛋白体(snRNP)、编辑体(editosome)等研究热点。

研究进入分子水平与整体水平相结合的阶段。比如果蝇的发育受调控基因网络的控制,一些实验室正在以整体与分子水平相结合的方式进行研究。

本 章 名 词 解 释

核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA .信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA .转移核糖核酸(Trna,transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。TRNA含有能识别模板mRNA上互补密码的反密码。转化(作用)(transformation):一个外源DNA 通过某种途径导入一个宿主菌,引起该菌的遗传特性改变的作用。转导(作用)(transduction):借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸,例如A与T或U , 以及G与C配对 。 夏格夫法则(Chargaff’s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A G=T C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。DNA超螺旋(DNAsupercoiling):DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。拓扑异构酶(topoisomerse):通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来改变DNA连环数的酶。拓扑异构酶Ⅰ、通过切断DNA中的一条链减少负超螺旋,增加一个连环数。某些拓扑异构酶Ⅱ也称为DNA促旋酶。核小体(nucleosome):用于包装染色质的结构单位,是由DNA链缠绕一个组蛋白核构成的。染色质(chromatin): 是存在与真核生物间期细胞核内,易被碱性染料着色的一种无定形物质。染色质中含有作为骨架的完整的双链DNA,以及组蛋白`非组蛋白和少量的DNA。染色体(chromosome):是染色质在细胞分裂过程中经过紧密缠绕`折叠`凝缩和精细包装形成的具有固定形态的遗传物质存在形式。简而言之,染色体是一个大的单一的双链DNA分子与相关蛋白质组成的复合物,DNA中含有许多贮存和传递遗传信息的基因。DNA变性(DNAdenaturation):DNA双链解链,分离成两条单链的现象。退火(annealing):既DNA由单链复性、变成双链结构的过程。来源相同的DNA单链经退火后完全恢复双链结构的过程,同源DNA之间`DNA和RNA之间,退火后形成杂交分子。熔解温度(melting temperature,Tm):双链DNA熔解彻底变成单链DNA的温度范围的中点温度。增色效应(hyperchromic effect):当双螺旋DNA熔解(解链)时,260nm处紫外吸收增加的现象。减色效应(hypochromic effect):随着核酸复性,紫外吸收降低的现象。核酸内切酶(exonuclease): 核糖核酸酶和脱氧核糖核酸酶中能够水解核酸分子内磷酸二酯键的酶。核酸外切酶(exonuclease):从核酸链的一端逐个水解核甘酸的酶。限制性内切酶(restriction endonuclease):一种在特殊核甘酸序列处水解双链DNA的内切酶。Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。限制酶图谱(restriction map):同一DNA用不同的限制酶进行切割,从而获得各种限制酶的切割位点,由此建立的位点图谱有助于对DNA的结构进行分析。反向重复序列(inverted repeat sequence):在同一多核甘酸内的相反方向上存在的重复的核甘酸序列。在双链DNA中反向重复可能引起十字形结构的形成。重组DNA技术(recombination DNA technology):也称之为基因工程(genomic engineering).利用限制性内切酶和载体,按照预先设计的要求,将一种生物的某种目的基因和载体DNA重组后转入另一生物细胞中进行复制`转录和表达的技术。基因(gene):也称为顺反子(cistron).泛指被转录的一个DNA片段。在某些情况下,基因常用来指编码一个功能蛋白或DNA分子的DNA片段。

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页