随机变量及其概率分布讲解(概率论与数理统计之随机变量及其分布函数知识点总结)
分布函数的定义:
对于任意实数x,记函数F(x)=P{X<=x},x取值范围实数全集,称F(x)为随机变量X的分布函数。
分布函数F(x)是定义在实数集上的一个实值函数,F(x)的值即为事件“X<=x”的概率。
分布函数的性质:
分布函数具有如下性质:
分布函数的性质
题型一:利用分布函数的性质求参数的值
例1:
解题思路:利用分布函数的性质来解题,这是考研中经常考察的题型。
解:由分布函数的性质得:
题型二:已知分布函数,求随机变量在一点的概率值
例2:
解题思路:根据分布函数的性质来计算。
解:根据分布函数性质5可得:
总结:本节需要熟练掌握分布函数的性质,分布函数的性质是考研中经常考察的知识点,需要重点掌握。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com