dubbo异步线程模型(dubbo源码解析-网络通信)
在之前的内容中,我们讲解了消费者端服务发现与提供者端服务暴露的相关内容,同时也知道消费者端通过内置的负载均衡算法获取合适的调用invoker进行远程调用。那么,本章节重点关注的就是远程调用过程即网络通信。
网络通信位于Remoting模块:
- Remoting 实现是 Dubbo 协议的实现,如果你选择 RMI 协议,整个 Remoting 都不会用上;
- Remoting 内部再划为 Transport 传输层 和 Exchange 信息交换层;
- Transport 层只负责单向消息传输,是对 Mina, netty, Grizzly 的抽象,它也可以扩展 UDP 传输;
- Exchange 层是在传输层之上封装了 Request-Response 语义;
网络通信的问题:
- 客户端与服务端连通性问题
- 粘包拆包问题
- 异步多线程数据一致问题
dubbo内置,dubbo协议 ,rmi协议,Hessian协议,http协议,WebService协议,Thrift协议,rest协议,grpc协议,memcached协议,Redis协议等10种通讯协议。各个协议特点如下
dubbo协议Dubbo 缺省协议采用单一长连接和 NIO 异步通讯,适合于小数据量大并发的服务调用,以及服务消费者机器数远大于服务提供者机器数的情况。
缺省协议,使用基于 mina 1.1.7 和 hessian 3.2.1 的 tbremoting 交互。
- 连接个数:单连接
- 连接方式:长连接
- 传输协议:TCP
- 传输方式:NIO 异步传输
- 序列化:Hessian 二进制序列化
- 适用范围:传入传出参数数据包较小(建议小于100K),消费者比提供者个数多,单一消费者无法压满提供者,尽量不要用 dubbo 协议传输大文件或超大字符串。
- 适用场景:常规远程服务方法调用
RMI 协议采用 JDK 标准的 Java.rmi.* 实现,采用阻塞式短连接和 JDK 标准序列化方式。
- 连接个数:多连接
- 连接方式:短连接
- 传输协议:TCP
- 传输方式:同步传输
- 序列化:Java 标准二进制序列化
- 适用范围:传入传出参数数据包大小混合,消费者与提供者个数差不多,可传文件。
- 适用场景:常规远程服务方法调用,与原生RMI服务互操作
Hessian 协议用于集成 Hessian 的服务,Hessian 底层采用 Http 通讯,采用 Servlet 暴露服务,Dubbo 缺省内嵌 Jetty 作为服务器实现。
Dubbo 的 Hessian 协议可以和原生 Hessian 服务互操作,即:
- 提供者用 Dubbo 的 Hessian 协议暴露服务,消费者直接用标准 Hessian 接口调用
- 或者提供方用标准 Hessian 暴露服务,消费方用 Dubbo 的 Hessian 协议调用。
- 连接个数:多连接
- 连接方式:短连接
- 传输协议:HTTP
- 传输方式:同步传输
- 序列化:Hessian二进制序列化
- 适用范围:传入传出参数数据包较大,提供者比消费者个数多,提供者压力较大,可传文件。
- 适用场景:页面传输,文件传输,或与原生hessian服务互操作
基于 HTTP 表单的远程调用协议,采用 Spring 的 HttpInvoker 实现
- 连接个数:多连接
- 连接方式:短连接
- 传输协议:HTTP
- 传输方式:同步传输
- 序列化:表单序列化
- 适用范围:传入传出参数数据包大小混合,提供者比消费者个数多,可用浏览器查看,可用表单或URL传入参数,暂不支持传文件。
- 适用场景:需同时给应用程序和浏览器 JS 使用的服务。
基于 WebService 的远程调用协议,基于 Apache CXF 实现](http://dubbo.apache.org/zh-cn/docs/user/references/protocol/webservice.html#fn2)。
可以和原生 WebService 服务互操作,即:
- 提供者用 Dubbo 的 WebService 协议暴露服务,消费者直接用标准 WebService 接口调用,
- 或者提供方用标准 WebService 暴露服务,消费方用 Dubbo 的 WebService 协议调用。
- 连接个数:多连接
- 连接方式:短连接
- 传输协议:HTTP
- 传输方式:同步传输
- 序列化:SOAP 文本序列化(http xml)
- 适用场景:系统集成,跨语言调用
当前 dubbo 支持 [1]的 thrift 协议是对 thrift 原生协议 [2] 的扩展,在原生协议的基础上添加了一些额外的头信息,比如 service name,magic number 等。
rest协议基于标准的Java REST API——JAX-RS 2.0(Java API for RESTful Web Services的简写)实现的REST调用支持
gRpc协议Dubbo 自 2.7.5 版本开始支持 gRPC 协议,对于计划使用 HTTP/2 通信,或者想利用 gRPC 带来的 Stream、反压、Reactive 编程等能力的开发者来说, 都可以考虑启用 gRPC 协议。
- 为期望使用 gRPC 协议的用户带来服务治理能力,方便接入 Dubbo 体系
- 用户可以使用 Dubbo 风格的,基于接口的编程风格来定义和使用远程服务
基于 memcached实现的 RPC 协议
redis协议基于 Redis 实现的 RPC 协议
序列化序列化就是将对象转成字节流,用于网络传输,以及将字节流转为对象,用于在收到字节流数据后还原成对象。序列化的优势有很多,例如安全性更好、可跨平台等。我们知道dubbo基于netty进行网络通讯,在NettyClient.doOpen()方法中可以看到Netty的相关类
bootstrap.setPipelineFactory(new ChannelPipelineFactory() {
public ChannelPipeline getPipeline() {
NettyCodecAdapter adapter = new NettyCodecAdapter(getCodec(), getUrl(), NettyClient.this);
ChannelPipeline pipeline = Channels.pipeline();
pipeline.addLast("decoder", adapter.getdecoder());
pipeline.addLast("encoder", adapter.getEncoder());
pipeline.addLast("handler", nettyHandler);
return pipeline;
}
});
然后去看NettyCodecAdapter 类最后进入ExchangeCodec类的encodeRequest方法,如下:
protected void encodeRequest(Channel channel, ChannelBuffer buffer, Request req) throws IOException {
serialization serialization = getSerialization(channel);
// header.
byte[] header = new byte[HEADER_LENGTH];
是的,就是Serialization接口,默认是Hessian2Serialization序列化接口。
Dubbo序列化支持java、compactedjava、nativejava、fastjson、dubbo、fst、hessian2、kryo,protostuff其中默认hessian2。其中java、compactedjava、nativejava属于原生java的序列化。
- dubbo序列化:阿里尚未开发成熟的高效java序列化实现,阿里不建议在生产环境使用它。
- hessian2序列化:hessian是一种跨语言的高效二进制序列化方式。但这里实际不是原生的hessian2序列化,而是阿里修改过的,它是dubbo RPC默认启用的序列化方式。
- json序列化:目前有两种实现,一种是采用的阿里的fastjson库,另一种是采用dubbo中自己实现的简单json库,但其实现都不是特别成熟,而且json这种文本序列化性能一般不如上面两种二进制序列化。
- java序列化:主要是采用JDK自带的Java序列化实现,性能很不理想。
最近几年,各种新的高效序列化方式层出不穷,不断刷新序列化性能的上限,最典型的包括:
- 专门针对Java语言的:Kryo,FST等等
- 跨语言的:Protostuff,ProtoBuf,Thrift,Avro,MsgPack等等
这些序列化方式的性能多数都显著优于 hessian2 (甚至包括尚未成熟的dubbo序列化)。所以我们可以为 dubbo 引入 Kryo 和 FST 这两种高效 Java 来优化 dubbo 的序列化。
使用Kryo和FST非常简单,只需要在dubbo RPC的XML配置中添加一个属性即可:
<dubbo:protocol name="dubbo" serialization="kryo"/>
解决socket中数据粘包拆包问题,一般有三种方式
- 定长协议(数据包长度一致)
- 定长的协议是指协议内容的长度是固定的,比如协议byte长度是50,当从网络上读取50个byte后,就进行decode解码操作。定长协议在读取或者写入时,效率比较高,因为数据缓存的大小基本都确定了,就好比数组一样,缺陷就是适应性不足,以RPC场景为例,很难估计出定长的长度是多少。
- 特殊结束符(数据尾:通过特殊的字符标识#)
- 相比定长协议,如果能够定义一个特殊字符作为每个协议单元结束的标示,就能够以变长的方式进行通信,从而在数据传输和高效之间取得平衡,比如用特殊字符\n。特殊结束符方式的问题是过于简单的思考了协议传输的过程,对于一个协议单元必须要全部读入才能够进行处理,除此之外必须要防止用户传输的数据不能同结束符相同,否则就会出现紊乱。
- 变长协议(协议头 payload模式)
- 这种一般是自定义协议,会以定长加不定长的部分组成,其中定长的部分需要描述不定长的内容长度。
- dubbo就是使用这种形式的数据传输格式
Dubbo 框架定义了私有的RPC协议,其中请求和响应协议的具体内容我们使用表格来展示。
Dubbo 数据包分为消息头和消息体,消息头用于存储一些元信息,比如魔数(Magic),数据包类型(Request/Response),消息体长度(Data Length)等。消息体中用于存储具体的调用消息,比如方法名称,参数列表等。下面简单列举一下消息头的内容。
偏移量(Bit) |
字段 |
取值 |
0 ~ 7 |
魔数高位 |
0xda00 |
8 ~ 15 |
魔数低位 |
0xbb |
16 |
数据包类型 |
0 - Response, 1 - Request |
17 |
调用方式 |
仅在第16位被设为1的情况下有效,0 - 单向调用,1 - 双向调用 |
18 |
事件标识 |
0 - 当前数据包是请求或响应包,1 - 当前数据包是心跳包 |
19 ~ 23 |
序列化器编号 |
2 - Hessian2Serialization 3 - JavaSerialization 4 - CompactedJavaSerialization 6 - FastJsonSerialization 7 - NativeJavaSerialization 8 - KryoSerialization 9 - FstSerialization |
24 ~ 31 |
状态 |
20 - OK 30 - CLIENT_TIMEOUT 31 - SERVER_TIMEOUT 40 - BAD_REQUEST 50 - BAD_RESPONSE ...... |
32 ~ 95 |
请求编号 |
共8字节,运行时生成 |
96 ~ 127 |
消息体长度 |
运行时计算 |
(1)发送请求
为了便于大家阅读代码,这里以 DemoService 为例,将 sayHello 方法的整个调用路径贴出来。
proxy0#sayHello(String)
—> InvokerInvocationHandler#invoke(Object, Method, Object[])
—> mockClusterInvoker#invoke(Invocation)
—> abstractClusterInvoker#invoke(Invocation)
—> FailoverClusterInvoker#doInvoke(Invocation, List<Invoker<T>>, LoadBalance)
—> Filter#invoke(Invoker, Invocation) // 包含多个 Filter 调用
—> ListenerInvokerWrapper#invoke(Invocation)
—> AbstractInvoker#invoke(Invocation)
—> DubboInvoker#doInvoke(Invocation)
—> ReferenceCountExchangeClient#request(Object, int)
—> HeaderExchangeClient#request(Object, int)
—> HeaderExchangeChannel#request(Object, int)
—> AbstractPeer#send(Object)
—> AbstractClient#send(Object, Boolean)
—> NettyChannel#send(Object, boolean)
—> NioClientSocketChannel#write(Object)
dubbo消费方,自动生成代码对象如下
public class proxy0 implements ClassGenerator.DC, EchoService, DemoService {
private InvocationHandler handler;
public String sayHello(String string) {
// 将参数存储到 Object 数组中
Object[] arrobject = new Object[]{string};
// 调用 InvocationHandler 实现类的 invoke 方法得到调用结果
Object object = this.handler.invoke(this, methods[0], arrobject);
// 返回调用结果
return (String)object;
}
}
InvokerInvocationHandler 中的 invoker 成员变量类型为 MockClusterInvoker,MockClusterInvoker 内部封装了服务降级逻辑。下面简单看一下:
public Result invoke(Invocation invocation) throws RpcException {
Result result = null;
// 获取 mock 配置值
String value = directory.getUrl().getMethodParameter(invocation.getMethodName(), MOCK_KEY, Boolean.FALSE.toString()).trim();
if (value.length() == 0 || value.equalsIgnoreCase("false")) {
// 无 mock 逻辑,直接调用其他 Invoker 对象的 invoke 方法,
// 比如 FailoverClusterInvoker
result = this.invoker.invoke(invocation);
} else if (value.startsWith("force")) {
// force:xxx 直接执行 mock 逻辑,不发起远程调用
result = doMockInvoke(invocation, null);
} else {
// fail:xxx 表示消费方对调用服务失败后,再执行 mock 逻辑,不抛出异常
try {
result = this.invoker.invoke(invocation);
} catch (RpcException e) {
// 调用失败,执行 mock 逻辑
result = doMockInvoke(invocation, e);
}
}
return result;
}
考虑到前文已经详细分析过 FailoverClusterInvoker,因此本节略过 FailoverClusterInvoker,直接分析 DubboInvoker。
public abstract class AbstractInvoker<T> implements Invoker<T> {
public Result invoke(Invocation inv) throws RpcException {
if (destroyed.get()) {
throw new RpcException("Rpc invoker for service ...");
}
RpcInvocation invocation = (RpcInvocation) inv;
// 设置 Invoker
invocation.setInvoker(this);
if (attachment != null && attachment.size() > 0) {
// 设置 attachment
invocation.addAttachmentsIfAbsent(attachment);
}
Map<String, String> contextAttachments = RpcContext.getContext().getAttachments();
if (contextAttachments != null && contextAttachments.size() != 0) {
// 添加 contextAttachments 到 RpcInvocation#attachment 变量中
invocation.addAttachments(contextAttachments);
}
if (getUrl().getMethodParameter(invocation.getMethodName(), Constants.ASYNC_KEY, false)) {
// 设置异步信息到 RpcInvocation#attachment 中
invocation.setAttachment(Constants.ASYNC_KEY, Boolean.TRUE.toString());
}
RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation);
try {
// 抽象方法,由子类实现
return doInvoke(invocation);
} catch (InvocationTargetException e) {
// ...
} catch (RpcException e) {
// ...
} catch (Throwable e) {
return new RpcResult(e);
}
}
protected abstract Result doInvoke(Invocation invocation) throws Throwable;
// 省略其他方法
}
上面的代码来自 AbstractInvoker 类,其中大部分代码用于添加信息到 RpcInvocation#attachment 变量中,添加完毕后,调用 doInvoke 执行后续的调用。doInvoke 是一个抽象方法,需要由子类实现,下面到 DubboInvoker 中看一下。
@Override
protected Result doInvoke(final Invocation invocation) throws Throwable {
RpcInvocation inv = (RpcInvocation) invocation;
final String methodName = RpcUtils.getMethodName(invocation);
//将目标方法以及版本好作为参数放入到Invocation中
inv.setAttachment(PATH_KEY, getUrl().getPath());
inv.setAttachment(VERSION_KEY, version);
//获得客户端连接
ExchangeClient currentClient; //初始化invoker的时候,构建的一个远程通信连接
if (clients.length == 1) { //默认
currentClient = clients[0];
} else {
//通过取模获得其中一个连接
currentClient = clients[index.getAndIncrement() % clients.length];
}
try {
//表示当前的方法是否存在返回值
boolean isOneway = RpcUtils.isOneway(getUrl(), invocation);
int timeout = getUrl().getMethodParameter(methodName, TIMEOUT_KEY, DEFAULT_TIMEOUT);
//isOneway 为 true,表示“单向”通信
if (isOneway) {//异步无返回值
boolean isSent = getUrl().getMethodParameter(methodName, Constants.SENT_KEY, false);
currentClient.send(inv, isSent);
RpcContext.getContext().setFuture(null);
return AsyncRpcResult.newDefaultAsyncResult(invocation);
} else { //存在返回值
//是否采用异步
AsyncRpcResult asyncRpcResult = new AsyncRpcResult(inv);
CompletableFuture<Object> responseFuture = currentClient.request(inv, timeout);
responseFuture.whenComplete((obj, t) -> {
if (t != null) {
asyncRpcResult.completeExceptionally(t);
} else {
asyncRpcResult.complete((AppResponse) obj);
}
});
RpcContext.getContext().setFuture(new FutureAdapter(asyncRpcResult));
return asyncRpcResult;
}
}
//省略无关代码
}
最终进入到HeaderExchangeChannel#request方法,拼装Request并将请求发送出去
public CompletableFuture<Object> request(Object request, int timeout) throws RemotingException {
if (closed) {
throw new RemotingException(this.getLocalAddress(), null, "Failed tosend request " request ", cause: The channel " this " is closed!");
}
// 创建请求对象
Request req = new Request();
req.setVersion(Version.getProtocolVersion());
req.setTwoWay(true);
req.setData(request);
DefaultFuture future = DefaultFuture.newFuture(channel, req, timeout);
try {
//NettyClient
channel.send(req);
} catch (RemotingException e) {
future.cancel();
throw e;
}
return future;
}
(2)请求编码
在netty启动时,我们设置了编解码器,其中通过ExchangeCodec完成编解码工作如下:
public class ExchangeCodec extends TelnetCodec {
// 消息头长度
protected static final int HEADER_LENGTH = 16;
// 魔数内容
protected static final short MAGIC = (short) 0xdabb;
protected static final byte MAGIC_HIGH = Bytes.short2bytes(MAGIC)[0];
protected static final byte MAGIC_LOW = Bytes.short2bytes(MAGIC)[1];
protected static final byte FLAG_REQUEST = (byte) 0x80;
protected static final byte FLAG_TWOWAY = (byte) 0x40;
protected static final byte FLAG_EVENT = (byte) 0x20;
protected static final int SERIALIZATION_MASK = 0x1f;
private static final Logger logger = LoggerFactory.getLogger(ExchangeCodec.class);
public Short getMagicCode() {
return MAGIC;
}
@Override
public void encode(Channel channel, ChannelBuffer buffer, Object msg) throws IOException {
if (msg instanceof Request) {
// 对 Request 对象进行编码
encodeRequest(channel, buffer, (Request) msg);
} else if (msg instanceof Response) {
// 对 Response 对象进行编码,后面分析
encodeResponse(channel, buffer, (Response) msg);
} else {
super.encode(channel, buffer, msg);
}
}
protected void encodeRequest(Channel channel, ChannelBuffer buffer, Request req) throws IOException {
Serialization serialization = getSerialization(channel);
// 创建消息头字节数组,长度为 16
byte[] header = new byte[HEADER_LENGTH];
// 设置魔数
Bytes.short2bytes(MAGIC, header);
// 设置数据包类型(Request/Response)和序列化器编号
header[2] = (byte) (FLAG_REQUEST | serialization.getContentTypeId());
// 设置通信方式(单向/双向)
if (req.isTwoWay()) {
header[2] |= FLAG_TWOWAY;
}
// 设置事件标识
if (req.isEvent()) {
header[2] |= FLAG_EVENT;
}
// 设置请求编号,8个字节,从第4个字节开始设置
Bytes.long2bytes(req.getId(), header, 4);
// 获取 buffer 当前的写位置
int savedWriteIndex = buffer.writerIndex();
// 更新 writerIndex,为消息头预留 16 个字节的空间
buffer.writerIndex(savedWriteIndex HEADER_LENGTH);
ChannelBufferOutputStream bos = new ChannelBufferOutputStream(buffer);
// 创建序列化器,比如 Hessian2ObjectOutput
ObjectOutput out = serialization.serialize(channel.getUrl(), bos);
if (req.isEvent()) {
// 对事件数据进行序列化操作
encodeEventData(channel, out, req.getData());
} else {
// 对请求数据进行序列化操作
encodeRequestData(channel, out, req.getData(), req.getVersion());
}
out.flushBuffer();
if (out instanceof Cleanable) {
((Cleanable) out).cleanup();
}
bos.flush();
bos.close();
// 获取写入的字节数,也就是消息体长度
int len = bos.writtenBytes();
checkPayload(channel, len);
// 将消息体长度写入到消息头中
Bytes.int2bytes(len, header, 12);
// 将 buffer 指针移动到 savedWriteIndex,为写消息头做准备
buffer.writerIndex(savedWriteIndex);
// 从 savedWriteIndex 下标处写入消息头
buffer.writeBytes(header);
// 设置新的 writerIndex,writerIndex = 原写下标 消息头长度 消息体长度
buffer.writerIndex(savedWriteIndex HEADER_LENGTH len);
}
// 省略其他方法
}
以上就是请求对象的编码过程,该过程首先会通过位运算将消息头写入到 header 数组中。然后对 Request 对象的 data 字段执行序列化操作,序列化后的数据最终会存储到 ChannelBuffer 中。序列化操作执行完后,可得到数据序列化后的长度 len,紧接着将 len 写入到 header 指定位置处。最后再将消息头字节数组 header 写入到 ChannelBuffer 中,整个编码过程就结束了。本节的最后,我们再来看一下 Request 对象的 data 字段序列化过程,也就是 encodeRequestData 方法的逻辑,如下:
public class DubboCodec extends ExchangeCodec implements Codec2 {
protected void encodeRequestData(Channel channel, ObjectOutput out, Object data, String version) throws IOException {
RpcInvocation inv = (RpcInvocation) data;
// 依次序列化 dubbo version、path、version
out.writeUTF(version);
out.writeUTF(inv.getAttachment(Constants.PATH_KEY));
out.writeUTF(inv.getAttachment(Constants.VERSION_KEY));
// 序列化调用方法名
out.writeUTF(inv.getMethodName());
// 将参数类型转换为字符串,并进行序列化
out.writeUTF(ReflectUtils.getDesc(inv.getParameterTypes()));
Object[] args = inv.getArguments();
if (args != null)
for (int i = 0; i < args.length; i ) {
// 对运行时参数进行序列化
out.writeObject(encodeInvocationArgument(channel, inv, i));
}
// 序列化 attachments
out.writeObject(inv.getAttachments());
}
}
至此,关于服务消费方发送请求的过程就分析完了,接下来我们来看一下服务提供方是如何接收请求的。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com