考研数学基本公式如何掌握(公式总结之常用诱导公式篇)
对于2020考研数学备考的学生来说,公式部分的内容我们要着重掌握,因为大多数题型都会涉及到。为此,小编整理了“2020考研数学:公式总结之常用诱导公式篇”的相关内容,希望对大家有所帮助。
一、常用诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ α)=sinα(k∈Z)
cos(2kπ α)=cosα(k∈Z)
tan(2kπ α)=tanα(k∈Z)
cot(2kπ α)=cotα(k∈Z)
公式二:
设α为任意角,π α的三角函数值与α的三角函数值之间的关系:
sin(π α)=-sinα
cos(π α)=-cosα
tan(π α)=tanα
cot(π α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2 α)=cosα
cos(π/2 α)=-sinα
tan(π/2 α)=-cotα
cot(π/2 α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2 α)=-cosα
cos(3π/2 α)=sinα
tan(3π/2 α)=-cotα
cot(3π/2 α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀:
上面这些诱导公式可以概括为:
对于π/2*k±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360° α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“ ”;
第二象限内只有正弦是“ ”,其余全部是“-”;
第三象限内切函数是“ ”,弦函数是“-”;
第四象限内只有余弦是“ ”,其余全部是“-”.
上述记忆口诀,一全正,二正弦,三内切,四余弦
还有一种按照函数类型分象限定正负:
函数类型第一象限第二象限第三象限第四象限
正弦........... ............ ............—............—........
余弦........... ............—............—............ ........
正切........... ............—............ ............—........
余切........... ............—............ ............—........
以上就是中公考研网校小编为您提供的全部内容,欢迎留言,参与讨论。
免责及版权声明:文章来源于网络,仅供个人研究学习,不涉及商业盈利目的,如有侵权请及时联系删除,观点仅代表作者本人,不代表中公考研网校立场。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com