简单实用的音调控制电路图(详解音量控制器和音调控制器电路)
1.典型双声道音量控制器电路
图4-41所示是双声道音量控制器。RP1-1和RP1-2是双联同轴电位器,用虚线表示这是一个同轴电位器,其中RP1-1是左声道音量电位器,RP1-2是右声道音量电位器。
图4-41 双声道音量控制器
当音量调节中转动音量旋钮时,RP1-1和RP1-2的动片同步动作,动片向上滑动时动片输出信号增大,送到后面功率放大电路中的信号增大,音量增大,反之则减小。
重要提示
音量控制器中采用Z(指数)型电位器,均匀转动音量电位器转柄时,动片与地端之间的阻值一开始上升较缓慢,后来阻值增大较快。这样,较小音量时,馈入扬声器的电功率增大量变化较小,音量较大时馈入扬声器的电功率增大量上升很快,这与人耳的对数听觉特性恰好相反,这样在均匀转动音量电位器转柄时,人耳感觉到的音量是均匀上升的,如图4-42所示。
图4-42 曲线示意图
2.电子音量控制器电路
重要提示
普通音量控制器电路结构简单,但存在一个明显的缺点,就是当机器使用时间较长以后,由于音量电位器的转动噪声会引起在调节音量时扬声器中出现“咔啦、咔啦”的噪声。这是因为音量电位器本身直接参与了信号的传输,当动片与碳膜之间由于灰尘、碳膜磨损存在接触不良时,导致信号传输有中断,引起噪声。
采用电子音量控制器后,由于音频信号本身不通过音量电位器,而且可以采用相应的消除噪声措施,这样即使电位器动片接触不好时也不会引起明显的噪声。另外,双声道电子音量控制器电路中可以用一只单联电位器同时控制左、右声道的音量。
图4-43所示是电子音量控制器电路。VT1、VT2构成差分放大器,VT3构成VT1和VT2发射极回路恒流管,RP1是音量电位器。
图4-43 电子音量控制器电路
音频信号传输线路是:音频信号Ui经C1耦合,加到VT1基极,经放大和控制后从其集电极输出。图4-44所示是信号传输过程示意图。
电路工作原理是:VT1和VT2发射极电流之和等于VT3的集电极电流,而VT3集电极电流受RP1动片控制。RP1动片在最下端时,VT3基极电压为0V,其集电极电流为0A,VT1和VT2截止,无输出信号,处于音量关死状态。
图4-44 信号传输过程示意图
RP1动片从下端向上滑动时,VT3基极电压逐渐增大,基极和集电极电流也逐渐增大,由于VT2的基极电流由R4决定,所以VT2发射极电流基本不变。这样VT3集电极电流增大导致VT1发射极电流逐渐增大,VT1发射极电流增大就是它的放大能力增大,使输出信号增大,即音量在增大。
RP1动片滑到最上端时,VT3集电极电流和VT1发射极电流最大,这时音量最大。
重要提示
由上述分析可知,通过控制VT3基极电压高低便能控制VT1的增益大小,从而控制音频输出信号Uo的大小,所以这种电路实际上是一种压控增益电路,即通过控制VT3基极上直流电压的大小来达到控制VT1增益大小的目的。
电路中的C3用来消除RP1动片可能出现接触不良而带来的噪声,当RP1动片发生接触不良时,由于C3两端的电压不能突变,这样保证了加到VT3基极的电压比较平稳,消除了RP1因接触不良而引起的噪声。
3.音量压缩电路
所谓音量压缩电路,是用来防止大信号时功率放大电路过负荷的电路。要求音量压缩电路在大信号到来时,自动压缩信号动态范围,并且要求因压缩而造成的信号失真要尽可能地小,因此音量压缩电路中采用了二极管、场效应管等非线性器件。
图4-45所示是二极管音量压缩电路。压缩电路由VD1~VD6、C1~C3、S1组成。S1是音量压缩开关,合上S1,接通压缩电路;S1断开时,无音量压缩功能。
图4-45 二极管音量压缩电路
输出信号经S1、C3送到VD3、VD6上,经整流加到VD1和VD2、VD4和VD5上,使之加上正向偏置,VD1和VD2、VD4和VD5微导通。其中VD3整流输出信号的负半周,VD6整流输出信号的正半周。
当大信号出现时,VD1和VD2、VD4和VD5的正向偏置电压变大,导通程度更深,内阻迅速下降,结果一部分输入信号的正、负半周经VD1和VD2、VD4和VD5,分别由C1、C2旁路到地,这样输入到低放电路的信号减小,达到防止大信号过负荷的目的。
音调控制器音调控制器用来对音频信号各频段内的信号进行提升或衰减,以满足听音者对听音的需要。一些中、高档组合音响中采用图示音调控制器,此时音调控制器采用独立一层的结构。
图示音调控制器电路按照电路组成划分主要有3种:LC串联谐振图示电路、集成电路图示电路和分立元器件图示电路。
1.集成电路图示音调控制器原理电路
图4-46所示是集成电路图示音调控制器原理电路,为单声道五段图示音调控制器电路。Ui为输入信号,Uo为经过音调控制器控制后的信号。
图4-46 集成电路图示音调控制器原理电路
RP1~RP5是5个频段音调控制电位器,控制的频率分别由动片与地之间的A1~A55个陷波器(也称为带阻滤波器)的陷波频率决定,A1~A5分别等效为5个中心频率为 100Hz、330Hz、1kHz、3.3kHz 和 10kHz的LC串联谐振电路。
A6是放大器,R1是A6的负反馈电阻,其阻值大小决定了A6的闭环增益大小。C2是高频消振电容,防止A6发生高频自激。C1是输入端耦合电容。
2.陷波器电路及等效电路
A1~A5这5个陷波器的电路结构是一样的,只是阻容元件的参数不同,图4-47所示是这种陷波器电路及等效电路。RP是音调控制电位器。A01是一个运算放大器,由于它的反相输入端与输出端相连,这样构成一个 1放大器。从图4-47中可以看出,这一陷波器电路等效成一个LC串联谐振电路。
1放大器及陷波器电路具有下列一些特性。
(1) 1放大器的增益为1。
(2)由于A01的开环增益很大, 1放大器可以看成输入阻抗很高、输出阻抗很低的理想放大器。用节点电流定律可以推算出图中P点对地的输入阻抗为
图4-47 陷波器及等效电路
(3)P点对地之间可以等效成一个电阻R和电感量等于R1· R2· C2大小的线圈,这样与电容C1构成一个等效的LC串联谐振电路。
(4)整个A1可以等效成一个LC串联谐振电路,其谐振频率f0为
陷波器等效成一个LC串联谐振电路,其谐振频率由R1、R2、C1和C2阻容元件标称值决定。实用电路中,往往将R1、R2阻值固定不变,而是通过外接电容C1、C2的容量变化,来获得不同频段的中心控制频率。
3.工作原理分析
以330Hz RP2控制器为例,分析这一电路的工作原理。设RP2的动片滑到中间位置,此时的等效电路如图4-48所示。电路中,RP2的动片等效为交流接地(仅对330Hz信号而言),动片将RP2分成RP2′、RP2″两部分。当RP2动片在中间位置时RP′2=RP″2。此时RP2′构成对输入信号Ui的对地分流电路,RP2″则是A6的负反馈电阻。此时,对330Hz信号处于不提升也不衰减状态。
当RP2动片向A点滑动时,RP2′的阻值减小,使RP2′对输入信号分流衰减的量增大。同时,由于RP2″的阻值增大,负反馈量增大,这样A6输出信号中的330Hz信号受到逐渐增大的衰减。当RP2动片滑到最顶端A点时,分流衰减量最大,负反馈量最大,330Hz信号受到最大的衰减,最大衰减量一般为10dB。根据阻抗特性可知,对330Hz信号的衰减量为最大,对大于或小于330Hz的信号因RP2动片回路陷波器阻抗较大,故衰减量较小。
图4-48 等效电路
当RP2动片从中间位置向B端滑动时,RP2′的阻值增大,对输入信号的分流衰减量逐渐减小,同时RP2″的阻值逐渐减小,负反馈量减小,放大倍数增大,对330Hz信号进行提升。当RP2动片滑到顶端B端时,RP2′阻值最大,等于RP2标称值,对输入信号的分流量为最小。同时RP2″阻值为0Ω,负反馈电阻最小,负反馈量最小,对330Hz信号的提升达到最大,一般为10dB。同理,由于RP2动片回路所接330Hz陷波器的阻抗特性,对大于或小于330Hz信号的提升量小于对330Hz的提升量。
重要提示
对于330Hz频段以外的信号,由于陷波器A2的阻抗很大而呈开路,故对这些信号无控制作用。另外,RP1~RP5的标称阻值较大,对信号的插入损耗不太大,各频段之间的相互影响也不大。
4.实用电路分析
图4-49所示是音响中的图示音调控制器电路。A401采用BA3822LS图示音调控制集成电路。RP404-1~RP413-1是10个频段的左声道音调控制电位器。
图4-49 音响中的图示音调控制器电路
输入信号Ui经C419耦合,加到A401的
脚,经放大和控制,信号从
脚输出,由C442和R436耦合到后级电路中。直流工作电压 V加到A401的电源端
脚,同时给VT405供电。 RP404-1~RP411-1动片与A401内电路构成8个陷波器电路。RP412-1动片上的陷波器电路由VT405构成。RP413-1动片则通过C433接地。RP404-1控制频率最低(因为动片上的电容容量为最大),RP405-1~RP413-1控制频率依次升高,RP413-1的控制频率为最高。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com