卷积神经网络python实现(Python通过TensorFlow卷积神经网络实现猫狗识别)
类别:脚本大全 浏览量:2423
时间:2022-01-14 02:52:03 卷积神经网络python实现
Python通过TensorFlow卷积神经网络实现猫狗识别这份数据集来源于Kaggle,数据集有12500只猫和12500只狗。在这里简单介绍下整体思路
- 处理数据
- 设计神经网络
- 进行训练测试
1. 数据处理
将图片数据处理为 tf 能够识别的数据格式,并将数据设计批次。
-
第一步
get_files()
方法读取图片,然后根据图片名,添加猫狗 label,然后再将 image和label 放到 数组中,打乱顺序返回 - 将第一步处理好的图片 和label 数组 转化为 tensorflow 能够识别的格式,然后将图片裁剪和补充进行标准化处理,分批次返回。
新建数据处理文件 ,文件名 input_data.py
|
import tensorflow as tf import os import numpy as np def get_files(file_dir): cats = [] label_cats = [] dogs = [] label_dogs = [] for file in os.listdir(file_dir): name = file .split(sep = '.' ) if 'cat' in name[ 0 ]: cats.append(file_dir + file ) label_cats.append( 0 ) else : if 'dog' in name[ 0 ]: dogs.append(file_dir + file ) label_dogs.append( 1 ) image_list = np.hstack((cats,dogs)) label_list = np.hstack((label_cats,label_dogs)) # print('There are %d cats\nThere are %d dogs' %(len(cats), len(dogs))) # 多个种类分别的时候需要把多个种类放在一起,打乱顺序,这里不需要 # 把标签和图片都放倒一个 temp 中 然后打乱顺序,然后取出来 temp = np.array([image_list,label_list]) temp = temp.transpose() # 打乱顺序 np.random.shuffle(temp) # 取出第一个元素作为 image 第二个元素作为 label image_list = list (temp[:, 0 ]) label_list = list (temp[:, 1 ]) label_list = [ int (i) for i in label_list] return image_list,label_list # 测试 get_files # imgs , label = get_files('/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/') # for i in imgs: # print("img:",i) # for i in label: # print('label:',i) # 测试 get_files end # image_W ,image_H 指定图片大小,batch_size 每批读取的个数 ,capacity队列中 最多容纳元素的个数 def get_batch(image,label,image_W,image_H,batch_size,capacity): # 转换数据为 ts 能识别的格式 image = tf.cast(image,tf.string) label = tf.cast(label, tf.int32) # 将image 和 label 放倒队列里 input_queue = tf.train.slice_input_producer([image,label]) label = input_queue[ 1 ] # 读取图片的全部信息 image_contents = tf.read_file(input_queue[ 0 ]) # 把图片解码,channels =3 为彩色图片, r,g ,b 黑白图片为 1 ,也可以理解为图片的厚度 image = tf.image.decode_jpeg(image_contents,channels = 3 ) # 将图片以图片中心进行裁剪或者扩充为 指定的image_W,image_H image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H) # 对数据进行标准化,标准化,就是减去它的均值,除以他的方差 image = tf.image.per_image_standardization(image) # 生成批次 num_threads 有多少个线程根据电脑配置设置 capacity 队列中 最多容纳图片的个数 tf.train.shuffle_batch 打乱顺序, image_batch, label_batch = tf.train.batch([image, label],batch_size = batch_size, num_threads = 64 , capacity = capacity) # 重新定义下 label_batch 的形状 label_batch = tf.reshape(label_batch , [batch_size]) # 转化图片 image_batch = tf.cast(image_batch,tf.float32) return image_batch, label_batch # test get_batch # import matplotlib.pyplot as plt # BATCH_SIZE = 2 # CAPACITY = 256 # IMG_W = 208 # IMG_H = 208 # train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/' # image_list, label_list = get_files(train_dir) # image_batch, label_batch = get_batch(image_list, label_list, IMG_W, IMG_H, BATCH_SIZE, CAPACITY) # with tf.Session() as sess: # i = 0 # # Coordinator 和 start_queue_runners 监控 queue 的状态,不停的入队出队 # coord = tf.train.Coordinator() # threads = tf.train.start_queue_runners(coord=coord) # # coord.should_stop() 返回 true 时也就是 数据读完了应该调用 coord.request_stop() # try: # while not coord.should_stop() and i<1: # # 测试一个步 # img, label = sess.run([image_batch, label_batch]) # for j in np.arange(BATCH_SIZE): # print('label: %d' %label[j]) # # 因为是个4D 的数据所以第一个为 索引 其他的为冒号就行了 # plt.imshow(img[j,:,:,:]) # plt.show() # i+=1 # # 队列中没有数据 # except tf.errors.OutOfRangeError: # print('done!') # finally: # coord.request_stop() # coord.join(threads) # sess.close() |
2. 设计神经网络
利用卷积神经网路处理,网络结构为
|
# conv1 卷积层 1 # pooling1_lrn 池化层 1 # conv2 卷积层 2 # pooling2_lrn 池化层 2 # local3 全连接层 1 # local4 全连接层 2 # softmax 全连接层 3 |
新建神经网络文件 ,文件名 model.py
|
#coding=utf-8 import tensorflow as tf def inference(images, batch_size, n_classes): with tf.variable_scope( 'conv1' ) as scope: # 卷积盒的为 3*3 的卷积盒,图片厚度是3,输出是16个featuremap weights = tf.get_variable( 'weights' , shape = [ 3 , 3 , 3 , 16 ], dtype = tf.float32, initializer = tf.truncated_normal_initializer(stddev = 0.1 , dtype = tf.float32)) biases = tf.get_variable( 'biases' , shape = [ 16 ], dtype = tf.float32, initializer = tf.constant_initializer( 0.1 )) conv = tf.nn.conv2d(images, weights, strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' ) pre_activation = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(pre_activation, name = scope.name) with tf.variable_scope( 'pooling1_lrn' ) as scope: pool1 = tf.nn.max_pool(conv1, ksize = [ 1 , 3 , 3 , 1 ], strides = [ 1 , 2 , 2 , 1 ], padding = 'SAME' , name = 'pooling1' ) norm1 = tf.nn.lrn(pool1, depth_radius = 4 , bias = 1.0 , alpha = 0.001 / 9.0 , beta = 0.75 , name = 'norm1' ) with tf.variable_scope( 'conv2' ) as scope: weights = tf.get_variable( 'weights' , shape = [ 3 , 3 , 16 , 16 ], dtype = tf.float32, initializer = tf.truncated_normal_initializer(stddev = 0.1 , dtype = tf.float32)) biases = tf.get_variable( 'biases' , shape = [ 16 ], dtype = tf.float32, initializer = tf.constant_initializer( 0.1 )) conv = tf.nn.conv2d(norm1, weights, strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' ) pre_activation = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(pre_activation, name = 'conv2' ) # pool2 and norm2 with tf.variable_scope( 'pooling2_lrn' ) as scope: norm2 = tf.nn.lrn(conv2, depth_radius = 4 , bias = 1.0 , alpha = 0.001 / 9.0 , beta = 0.75 , name = 'norm2' ) pool2 = tf.nn.max_pool(norm2, ksize = [ 1 , 3 , 3 , 1 ], strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' , name = 'pooling2' ) with tf.variable_scope( 'local3' ) as scope: reshape = tf.reshape(pool2, shape = [batch_size, - 1 ]) dim = reshape.get_shape()[ 1 ].value weights = tf.get_variable( 'weights' , shape = [dim, 128 ], dtype = tf.float32, initializer = tf.truncated_normal_initializer(stddev = 0.005 , dtype = tf.float32)) biases = tf.get_variable( 'biases' , shape = [ 128 ], dtype = tf.float32, initializer = tf.constant_initializer( 0.1 )) local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name = scope.name) # local4 with tf.variable_scope( 'local4' ) as scope: weights = tf.get_variable( 'weights' , shape = [ 128 , 128 ], dtype = tf.float32, initializer = tf.truncated_normal_initializer(stddev = 0.005 , dtype = tf.float32)) biases = tf.get_variable( 'biases' , shape = [ 128 ], dtype = tf.float32, initializer = tf.constant_initializer( 0.1 )) local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name = 'local4' ) # softmax with tf.variable_scope( 'softmax_linear' ) as scope: weights = tf.get_variable( 'softmax_linear' , shape = [ 128 , n_classes], dtype = tf.float32, initializer = tf.truncated_normal_initializer(stddev = 0.005 , dtype = tf.float32)) biases = tf.get_variable( 'biases' , shape = [n_classes], dtype = tf.float32, initializer = tf.constant_initializer( 0.1 )) softmax_linear = tf.add(tf.matmul(local4, weights), biases, name = 'softmax_linear' ) return softmax_linear def losses(logits, labels): with tf.variable_scope( 'loss' ) as scope: cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits \ (logits = logits, labels = labels, name = 'xentropy_per_example' ) loss = tf.reduce_mean(cross_entropy, name = 'loss' ) tf.summary.scalar(scope.name + '/loss' , loss) return loss def trainning(loss, learning_rate): with tf.name_scope( 'optimizer' ): optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate) global_step = tf.Variable( 0 , name = 'global_step' , trainable = False ) train_op = optimizer.minimize(loss, global_step = global_step) return train_op def evaluation(logits, labels): with tf.variable_scope( 'accuracy' ) as scope: correct = tf.nn.in_top_k(logits, labels, 1 ) correct = tf.cast(correct, tf.float16) accuracy = tf.reduce_mean(correct) tf.summary.scalar(scope.name + '/accuracy' , accuracy) return accuracy |
3. 训练数据,并将训练的模型存储
您可能感兴趣
热门推荐 |