世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)

如今我国大力发展的“新基建”5G,围绕整个5G的生态发展,其中有一个环节非常重要,那就是算法,而算法就特别依赖数据处理器。

5G时代带来通信带宽的巨大提升,更多的带宽使能更多的应用。数据量的迅猛增多,服务器网络带宽的快速增长,都已经远超计算能力的增长,有线速I/O处理需求的应用程序,受到CPU和内存的限制,现有系统因为CPU资源占用,致延迟增加,包处理性能出现波动。

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(1)

5G时代带来互联终端设备的大爆发,也带来数据大爆发。据统计2019年全球产生数据45ZB,预计到2024年这一数字将达到142ZB,其中24%的数据将来自终端实时数据。海量数据条件下,低时延网络传输,及数据处理的算力需求,及性能压力巨大。

5G时代带来个性化定制私域网络时代。5G网络不止用于公众客户,更主要的赋能各行各业,作为新基建的重要组成,推动社会发展。5G将大量部署在网络边缘,提供实时应用和服务。据IDC统计,近10年来全球算力增长,明显滞后于数据的增长。每3.5个月全球算力的需求就会翻一倍,远超算力增长的速度。算力,作为先进生产力,承载了十万亿美元规模经济。在5G的推动下,计算组织从“端-云”一体,到“端-边缘-云”一体;从内存计算发展到网内计算。基础设施云资源作为5G发展的重要基石,也发生了极大的变化。

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(2)

5G MEC是一种分布式计算部署架构,将计算能力、业务以及部分5G网络能力部署到网络边缘,实现低时延的就地数据处理、敏感数据本地处理。MEC可以很好的适配低频、频次不确定性同时时间敏感的业务场景。

5G MEC包括5G网关UPF、边缘应用平台MEP、行业应用APP以及虚拟化基础设施。5G MEC作为一体式设备,部署在靠近终端用户侧的边缘位置,提供大带宽、低时延的网络连接能力,AI、图像渲染等计算能力,以及面向行业的安全能力。

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(3)

边缘云网融合架构

边缘计算将从传统的集中式互联网交换(Internet Exchange IX)模型,扩展到边缘交换模型。位于边缘的最终用户和设备远离主要IX点,流量到达这些位置所需的距离,会降低性能并显著增加传输成本。网络互联需要在靠近最终用户的最后一公里网络附近的边缘进行。数据在边缘互联和共享,不涉及核心网。边缘互联将更多流量保留在本地。

低延迟网络是边缘计算的重要组成,要求网络节点尽可能靠近本地。随着越来越多的数据在本地产生本保存,网络互联密度将在边缘激增,骨干网将延伸到边缘,对等互联和数据交换将发生在接入网的1-2跳内。随着边缘计算基础设施的建设,许多设施将发挥网络间数据交换点的作用。网络汇聚于这些节点,为边缘服务提供支持,降低边缘服务延迟,缩短光纤距离,减少网络跳数。随着计算向边缘扩展,网络交叉连接也将更加分散。预计到2025年,75%的数据将在工厂、医院、零售、城市的边缘产生、处理、存储和分析。

5G具有灵活的前导码,以满足低延迟连接的需求。随着边缘计算需求的增长,现有的回传网络处理速度无法匹配5G网络数据产生的速度和容量需求,需要在边缘部署新的、更快和更高容量的路由。

5G虚拟化网络功能需要高度分布式的数据中心。这类数据中心可以部署足够多的服务器,在运行5G网络的同时运行边缘云服务。

将工作负载置于边缘要求对应用构建和运行的方式进行调整,让代码可以从数据中心的服务器到客户场所设备中的微控制器。需要管理高度分布式的应用和数据,编排大规模的边缘操作。(云原生技术和DevSecOps技术)推送到边缘的代码应该是自包含的,每个组件必须完整,包含代码、配置、库以及软件定义的环境,代码作为一个整体构建、测试和部署,确保容器或虚拟机可以在任何地方运行。

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(4)

在云基础设施领域,CPU用于通用计算,构建应用生态,虚拟化技术例如Hypevisor等占用大量的内存和CPU资源,而真正用作共享的资源受到较大的影响。以网络协议处理为例,解析报文需要接近100个cycle,线速处理10G的网络需要约4个Xeon CPU的核,单做网络数据包处理,就可以占去一个8核高端CPU一半的算力。而GPU用于加速计算,专注于图像处理、流媒体处理,并继续朝着AR、VR处理,AI加速的方向发展。在云基础设施领域,需要一种技术,能够卸载CPU负荷,最大限度的将硬件资源共享给租户。

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(5)

十年前,网络处理器(NP)主要用于包处理、协议处理加速,应用在各种网关、防火墙、UTM等设备上,多采用多核NOC架构。后来Intel推出了DPDK技术,在用户空间上利用自身提供的数据平面库手发数据包,绕过linux内核协议栈,极大提升了包转发速率,原来需要NP来实现的网关类设备,现在X86就能满足性能要求。而DPU则是5G时代集网络加速为一体的新型数据处理单元。DPU内部融合了RDMA、网络功能、存储功能、安全功能、虚拟化功能。接手CPU不擅长的网络协议处理、数据加解密、数据压缩等数据处理任务,同时兼顾传输和计算的需求。DPU起到连接枢纽的作用,一端连接CPU、GPU、SSD、FPGA加速卡等本地资源,一端连接交换机/路由器等网络资源。总体而言,DPU不仅提高了网络传输效率,而且释放了CPU算力资源,从而带动整体数据中心的降本增效。

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(6)

三种作用

1、“数据”核心 ,区别于信号处理器、基带处理器等通信相关的处理器对应的“信号”, 也区别于GPU对应的图形图像类数据,这里的“数据”主要指数字化以后的各 种信息,特别是各种时序化、结构化的数据,比如大型的结构化表格,网络流 中的数据包,海量的文本等等。

2、把数据中心作为DPU的应用场景,特别是随着WSC(Warehouse-scale Computer)的兴起, 不同规模的数据中心成为了IT核心基础设施。目前来看,DPU确实在数据中心中使用前景非常广阔。但是计算中心的三大部分:计算、网络、存储,计算部分是CPU占主导,GPU辅助;网络部分是路由器和交换机,存储部分是高密度 磁盘构成的的RAID系统和SSD为代表非易失性存储系统。

3、Data-centric, 即数据为中心,是处理器设计的一种理念,相对于“Control-centric”即控制为 中心。经典的冯诺依曼体系结构就是典型的控制为中心的结构,在冯诺依曼经 典计算模型中有控制器、计算器、存储器、输入和输出,在指令系统中的表现 是具有一系列非常复杂的条件跳转和寻址指令。而数据为中心的理念与数据流 (Data Flow)计算一脉相承,是一种实现高效计算的方法。同时,现在试图打破访存墙(Memory Wall)的各种近存(Near-memory)计算、存内(Inmemory)计算、存算一体等技术路线,也符合数据为中心的设计理念。

DPU作用

DPU最直接的作用是作为CPU的卸载引擎,接管网络虚拟化、硬件资源池 化等基础设施层服务,释放CPU的算力到上层应用。以网络协议处理为例,要 线速处理10G的网络需要的大约4个Xeon CPU的核,也就是说,单是做网络数据 包处理,就可以占去一个8核高端CPU一半的算力。如果考虑40G、100G的高速 网络,性能的 开销就更加难以承受了。Amazon把这些开销都称之为 “Datacenter Tax”,即还未运行业务程序,先接入网络数据就要占去的计算资源。AWS Nitro产品家族旨在将数据中心开销(为虚拟机提供远程资源,加密解 密,故障跟踪,安全策略等服务程序)全部从CPU卸载到Nitro加速卡上,将给 上层应用释放30%的原本用于支付“Tax” 的算力!

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(7)

DPU可以成为新的数据网关,将安全隐私提升到一个新的高度。在网络环境下,网络接口是理想的隐私的边界,但是加密、解密算法开销都很大,例如国密标准的非对称加密算法SM2、哈希算法SM3和对称分组密码算法SM4。如果用CPU来处理,就只能做少部分数据量的加密。在未来,随着区块链承载的业务的逐渐成熟,运行共识算法POW,验签等也会消耗掉大量的CPU算力。而这 些都可以通过将其固化在DPU中来实现,甚至DPU将成为一个可信根。

DPU也可以成为存储的入口,将分布式的存储和远程访问本地化。随着 SSD性价比逐渐可接受,部分存储迁移到SSD器件上已经成为可能,传统的面向 机械硬盘的SATA协议并不适用于SSD存储,所以,将SSD通过本地PCIe或高速 网络接入系统就成为必选的技术路线。NVMe(Non Volatile Memory Express) 就是用于接入SSD存储的高速接口标准协议,可以通过PCIe作为底层传输协 议,将SSD的带宽优势充分发挥出来。同时,在分布式系统中,还可通过 NVMe over Fabrics(NVMe-oF)协议扩展到InfiniBand、Ethernet、或Fibre channel节点中,以RDMA的形式实现存储的共享和远程访问。这些新的协议处 理都可以集成在DPU中以实现对CPU的透明处理。进而,DPU将可能承接各种 互连协议控制器的角色,在灵活性和性能方面达到一个更优的平衡点。

DPU将成为算法加速的沙盒,成为最灵活的加速器载体。DPU不完全是一颗固化的ASIC,在CXL、CCIX等标准组织所倡导CPU、GPU与DPU等数据一致性访问协议的铺垫下,将更进一步扫清DPU编程障碍,结合FPGA等可编程器件,可定制硬件将有更大的发挥空间,“软件硬件化”将成为常态,异构计算的潜能将因各种DPU的普及而彻底发挥出来。在出现“Killer Application”的领 域都有可能出现与之相对应的DPU,诸如传统数据库应用如OLAP、OLTP, 5G边缘计算,智能驾驶V2X等等。

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(8)

随着2019年我国以信息网络等新型基础设施为代表的“新基建”战略帷幕的拉开,5G、 千兆光纤网络建设发展迅速,移动互联网、工业互联网、车联网等领域发展日新月异。云计算、数据中心、智算中心等基础设施快速扩容。网络带宽从主流 10G朝着25G、40G、100G、200G甚至400G发展。网络带宽和连接数的剧增使得数据的通路更宽、更密,直接将处于端、边、云各处的计算节点暴露在了剧增的数据量下,而CPU的性能增长率与数据量增长率出现了显著的“剪刀差”现象。

所以,寻求效率更高的计算芯片就成为了业界的共识。DPU芯片就是在这样的趋势下提出的。

DPU将助力隐私计算的发展

基于隐私保护技术的数据要素化,使得数据所有权和使用权分离,使得数据价值可以流动。这显然是有巨大代价的。主要是算力和网络的两方面:

多方安全计算、联邦学习、同态加密、差分隐私、零知识证明等密码学方法,性能低,需要的计算资源比明文多几个数量级;

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(9)

算力不足可以用硬件加速缓解,但是网络带宽,尤其是公网环境,有限的带宽是目前落地的瓶颈。尤其是多方安全计算MPC、联邦学习等需要多轮网络交互的技术。

对于性能问题,DPU可以带来改善。DPU的本质是将计算向存储靠近。类似的方案有存内计算、近内存计算等框架,还有将计算和数据融合的雾计算。

在数据的流动,即网络传输,是数据中心的第二大职能。诸如网络协议处理、传输压缩、数据加密等任务都是网卡设备的职能。DPU可以被集成到SmartNIC(下一代网卡)中,从而带来网卡的性能提升,那么它不仅可以处理物理层和链路层的数据帧,也有能力承担网络层和应用层的职能。

端上DPU-全面软件定义硬件

数据中心的负载主要有:计算的分配、存储的共享、硬件资源的虚拟化等。DPU不仅使得网卡功能变得“软件定义硬件”,可能成为全面的“软件定义硬件”的工具。未来,DPU的市场也将不会局限在数据中心,也会出现在移动端和边缘端,例如自动驾驶场景、物联网数据融合和一些消费级的DPU产品、移动端上隐私保护。

DPU在端上的发展,将促进形成以用户为中心的数据所有权格局。借助分布式系统等技术例如区块链。新的数据生态、数据经济、数据商业模式将成为现实。

DPU全称是 data processing unit,在云计算技术和产品里出现时间也有几年了,包括AWS的Nitro(注意不是智能网卡ENA,ENA对应的是Mellanox的CX-5等),不过大部分云厂商都是用于自己云平台上,只是最近NVIDIA CEO Jensen Huang对其DPU产品BlueField-X的介绍和产品发布视频导致了一股讨论热潮。

那么到底什么是DPU?通过以下几点对DPU即同类型设备的几点特征做如下解释:

1)DPU是一块完整的板卡,这块卡有独自的CPU,不是类似原来嵌入式设备的MIPS等性能不高的CPU,通常是ARM等服务器同类型的CPU;这块卡还有独立的内存、磁盘、网卡及可配置GPU等增强设备,有独立的BMC和OS,如果不看物理形态,完全是一台体积小的服务器;

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(10)

2)DPU设备工作时,附录在通用服务器上,作为附属设备使能,通过PCI设备与所属Host进行交互信息;在Host OS来看,DPU设备是透明的,但是提供的网路、存储、安全等能力是可见的;

3)DPU设备的启动/重启,对所属Host有依赖,二者的OS相互独立但是有控制信息传递和数据信息的交互(通过PCI接口);相比智能网卡,完全在所属主机Host内可视可控;

4)不少人认为DPU是智能网卡或智能网卡的增强版,个人并不这么认为;一方面是DPU要比智能网卡的能力全的多(包括有网络能力、存储能力、安全能力等),再一个是智能网卡的驱动通常是在所在主机内,DPU完全不需要任何驱动,最后DPU有独立的CPU和OS而智能网卡仅是驱动设备;所以DPU是一种全新的软件定义基础设施的设备(Software-Defined Infrastructure),不是已有网卡设备的增强版;

DPU可以提供的几点能力:

1)提供为所属主机的网络处理能力、存储处理能力和安全处理能力,这些能力可以使用DPU的OS的软件栈来实现,也可以通过智能网卡或安全设备实现网络处理能力、存储处理能力和安全处理能力的硬件卸载,以提升处理性能;比如NVIDIA的BlueField-2,集成了ConnectX-6提供200G的以太网,或IB处理能力,实现了虚拟交换机卸载;

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(11)

2)DPU类型的设备所用CPU,可以是前面提及的ARM,也可以是其它能力匹配的CPU,比如X86等,但产品化要考虑性能、功耗、产品体积、主机插槽等各方面影响;

3)DPU类型的设备,如类似AWS的Nitro卡,可以提供hypervisor的能力,对BMS和EC2实例提供一致的产品架构和特性能力,对于BMS产品实现尤其重要,可以参考阿里的神龙相关说明;

4)DPU类型设备提供了服务器“异构”的生态自主构建能力,如X86的服务器上,很多如Mellanox(已被NVIDIA 收购)的网卡、英伟达的GPU,可以很方便的在X86上,通过标准的PCI标准提供相应的能力,无需再直接和X86 主板CPU产生关联;使得其它厂商给服务器的主机CPU外围,提供更多能力构建的通道,不会和主机CPU产生绑定和依赖,“绕开”了主机CPU厂商设置的“门槛”。

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(12)

1)从技术上来说,可以通过主机外面附加DPU设备,最大化Host资源使用率,通过DPU的廉价性使能,在如云计算场景,有更多的主机CPU可以销售,提供更大规格单EC2实例,甚至BMS提供了方案,更多的主机CPU出售,主机数没有增加,销售产品数量增加了;使用DPU的智能网卡等硬件卸载,提升网络能力和存储能力,以及加解密安全能力;DPU设备对于主机的透明性,增加了云计算主机入侵后的扩散隔离能力;

世界5g处理器技术排名(5G新基建下的数据处理器逐渐引起重视)(13)

2)从商业上讲,以DPU对于NVIDIA为例,NVIDIA产品中网卡、GPU外设,可以不再受Host主板/板载约束,DPU设备通过PCI标准通信,实现了CPU算力的逐步抢占,可以在维持客户数据中心已有X86设备的基础上,叠加NVIDIA的设备能力,逐步蚕食这块算力市场,构建NVIDIA在数据中心整体能力建设,最终实现数据中心全NVIDIA的“设备全栈”目标;突破比如intel CPU板载网卡,必须是本厂商的限制;

3)从趋势上讲,DPU设备对于主机Host,具有了更多“智能化”,虽然原来服务器通常有管理职能化(BMC),但接口标准性、接口性能、功能丰富度一直存在不足,DPU设备对于数据中心硬件设备的SDN(Network Defined Software)、SDS(Network Defined Storage)后的SDC(Network Defined Compute)最后一环,提供了一种实现,相比原来纯虚拟化内容的SDC,最终实现了能力加设备的智能管控,即前面提及的SDI能力;

4)从整体运行的系统性来讲,原来单主机允许的故障范围,扩大到DPU设备和CPU主机,二者之一有故障,会带来整体的损坏,可靠性和稳定性角度是有下降的,毕竟“没有免费的午餐”,想获得收益就得有付出,只是这个代价是否是客户可以接受的。

5)DPU毕竟也属于一款硬件产品,研发不仅包括了CPU,还有网卡、OS等,对于基于DPU进行自主和服务器设备自身研发,不会存在太多差异,甚至因为设备体积限制等,带来更多制造精度的要求,因此DPU的制造可以当做服务器集成,技术上还是有很多可以从服务器商借鉴的。

好了,今天就写到这。

我是六六科技人,让我们一起畅谈科技。

欢迎有相同兴趣的朋友加入我们,聊汽车、聊科技、聊热点、聊人生。

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页