高中数学知识点及公式汇总(期末复习前必备公式)
求导公式
积化和差公式
公式
sinαsinβ=-[1][cos(α β)-cos(α-β)]/2【注意等式右边前端的负号】
cosαcosβ=[cos(α β) cos(α-β)]/2
sinαcosβ=[sin(α β) sin(α-β)]/2
cosαsinβ=[sin(α β)-sin(α-β)]/2
这里用到了sin(-α)=-sinα 即sin(α-β)= - sin(β-α)
证明:
法1
积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。
即只需要把等式右边用两角和差公式拆开就能证明:
sinαsinβ=-1/2[-2sinαsinβ]
=-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ sinαsinβ)]
=-1/2[cos(α β)-cos(α-β)]
其他的3个式子也是相同的证明方法。
(该证明法逆向推导可用于和差化积的计算,参见和差化积)
法2
根据欧拉公式,e^ix=cosx isinx
令x=a b
得e ^I(a b)=e^ia*e^ib=(cosa isina)(cosb isinb)=cosacosb-sinasinb i(sinacosb sinbcosa)=cos(a b) isin(a b)
所以cos(a b)=cosacosb-sinasinb
sin(a b)=sinacosb sinbcosa
记忆方法
积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了特点各自的简单记忆方法。
这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其和差的值域应该 是[-2,2],而积的值域却是[-1,1],因此除以2是必须的。
也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2
如:
cos(α-β)-cos(α β)
=(cosαcosβ sinαsinβ)-(cosαcosβ-sinαsinβ)
=2sinαsinβ
故最后需要除以2。
向量公式向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a b)×c=a×c b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。
向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB BC=AC。
a b=(x x',y y')。
a 0=0 a=a。
向量加法的运算律:
交换律:a b=b a;
结合律:(a b) c=a (b c)。
向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a b=0. 0的反向量为0
AB-AC=CB. 即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ μ)a=λa μa.
数对于向量的分配律(第二分配律):λ(a b)=λa λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com