向量与向量间的夹角范围(夹角在向量中的地位)

向量是有大小和方向的量,书写和印刷体要分开,数量积(内积)运算比实数的乘积运算多一个夹角的余弦,也正是由于多的这个值,向量的运算变化多样,结果是数量而不是向量,比纯粹的坐标运算更有优势,夹角就是数量积尤其要关注的。

在理解的过程中,很多人忽视几何意义,有点头重脚轻,平面向量的数量积a·b(印刷体)是一个非常重要的概念利用它可以很容易地证明平面几何的许多命题例如勾股定理菱形的对角线相互垂直矩形的对角线相等等。

几何意义说简单点就是一个量在另一个量上的投影与另一个量模的乘积

向量与向量间的夹角范围(夹角在向量中的地位)(1)

在运算中我们常会考虑最熟悉掌握最牢固的方法来做,方法不分好坏,每种方法背后都有其蕴含的数学思想,了解其本质乃是脱离题海的唯一途径!

向量与向量间的夹角范围(夹角在向量中的地位)(2)

向量与向量间的夹角范围(夹角在向量中的地位)(3)

坐标运算一般计算量较大,有图形的题一定要结合几何性质共同求解,把问题处理回归到最简单的数学模型中,做一千题不如做好一题,在解题中多思考,不盲目题海战术。

看看这些题,是不是很简单呢?不熟庐山真面目,只缘身在此山中!

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页