小学数学重点知识必背公式(数学系列之小学数学一年级数学公式大全)

小学数学重点知识必背公式(数学系列之小学数学一年级数学公式大全)(1)

小学知识整理:数学系列之小学数学一年级数学公式大全

为大家整理了最新小学生一年级数学公式大全,希望大家阅读愉快。

小学一年级数学公式(1)

1、加数 加数 = 和2、被减数 – 减数 = 差

和 = 加数 加数差 = 被减数 – 减数

和 – 加数 = 另一个加数被减数 – 差 = 减数

另一个加数 = 和 – 加数减数= 被减数 – 差

差 减数 = 被减数

被减数 = 差 减数

3、一个数从右边起第一位是个位,(表示几个一)

第二位是十位.(表示几个十)第三位是百位.(表示几个百)

读数和写数都从高位起.读作是写语文字,写作是写数学字

个的前面写数学字,个的后面写语文字。

4、?在“︸”下面就是求总数,用加法计算。( )

?在“︸”上面就是求部分,用减法计算。(-)

5、求大数比小数多多少,用减法计算。(-)

求小数比大数少多少,用减法计算。(-)

大数=小数 多出来的数小数=大数—多出来的数多出来的数=大数—小数

6、时针短,分针长。1时=60分60分=1时1刻=15分

分针指着12是整时,时针指着数字几就是几时,

分针指着6是半时,时针过数字几就是几时半。

7、凑十歌:小朋友拍拍手,大家来唱凑十歌,九凑一,八凑二,七凑三来六凑四,两五相凑就满十。

凑十法:拆小数,凑大数。拆大数,凑小数。

8、图文应用题:先找出已知条件和问题,再确定用加法或减法计算。最后要记得写答.

求一共是多少,用加法计算。( )

求还有、还剩、剩下是多少,用减法计算。(-)

9、1元=10角1角=10分1元=100分

10、交换加数的位置,和不变。

小学一年级数学公式(2)

小学数学重点知识必背公式(数学系列之小学数学一年级数学公式大全)(2)

为大家整理了最新小学生一年级数学公式大全,希望大家阅读愉快。

1、加数 加数 = 和2、被减数 – 减数 = 差

和 = 加数 加数差 = 被减数 – 减数

和 – 加数 = 另一个加数被减数 – 差 = 减数

另一个加数 = 和 – 加数减数= 被减数 – 差

差 减数 = 被减数

被减数 = 差 减数

3、一个数从右边起第一位是个位,(表示几个一)

第二位是十位.(表示几个十)第三位是百位.(表示几个百)

读数和写数都从高位起.读作是写语文字,写作是写数学字

个的前面写数学字,个的后面写语文字。

4、?在“︸”下面就是求总数,用加法计算。( )

?在“︸”上面就是求部分,用减法计算。(-)

5、求大数比小数多多少,用减法计算。(-)

求小数比大数少多少,用减法计算。(-)

大数=小数 多出来的数小数=大数—多出来的数多出来的数=大数—小数

6、时针短,分针长。1时=60分60分=1时1刻=15分

分针指着12是整时,时针指着数字几就是几时,

分针指着6是半时,时针过数字几就是几时半。

7、凑十歌:小朋友拍拍手,大家来唱凑十歌,九凑一,八凑二,七凑三来六凑四,两五相凑就满十。

凑十法:拆小数,凑大数。拆大数,凑小数。

8、图文应用题:先找出已知条件和问题,再确定用加法或减法计算。最后要记得写答.

求一共是多少,用加法计算。( )

求还有、还剩、剩下是多少,用减法计算。(-)

9、1元=10角1角=10分1元=100分

10、交换加数的位置,和不变。

小学数学几何形体周长 面积 体积计算公式

1、长方形的周长=(长 宽)×2C=(a b)×2

2、正方形的周长=边长×4C=4a

3、长方形的面积=长×宽S=ab

4、正方形的面积=边长×边长S=a.a=

5、三角形的面积=底×高÷2S=ah÷2

6、平行四边形的面积=底×高S=ah

7、梯形的面积=(上底 下底)×高÷2S=(a+b)h÷2

8、直径=半径×2 d=2r 半径=直径÷2r= d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2c=πd =2πr

10、圆的面积=圆周率×半径×半径

小学数学重点知识必背公式(数学系列之小学数学一年级数学公式大全)(3)

小学数学图形计算公式

1 、正方形

C周长S面积a边长

周长=边长×4C=4a

边长=周长÷4a=C÷4

面积=边长×边长S=a×a=a2

2 、正方体

V:体积a:棱长

表面积=棱长×棱长×6S表=a×a×6

体积=棱长×棱长×棱长V=a×a×a=a3

3 、长方形

C周长S面积a长b宽

周长=(长 宽)×2C=(a b)×2

长=周长÷2-宽宽=周长÷2-长

面积=长×宽S=a×b

4 、长方体

V:体积s:面积a:长b: 宽h:高

(1)表面积=长×宽×2 长×高×2 宽×高×2S=2(ab ah bh)

(2)体积=长×宽×高V=abh

长=体积÷(宽×高)

宽=体积÷(长×高)

高=体积÷(长×宽)

5 三角形

s面积a底h高

面积=底×高÷2s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6 平行四边形

s面积a底h高

面积=底×高s=ah

底=面积÷高高=面积÷底

7 梯形

s面积a上底b下底h高

面积=(上底 下底)×高÷2s=(a b)× h÷2

高=面积×2÷(上底 下底)

上底=面积×2÷高-下底

下底=面积×2÷高-上底

8 圆形

S面积C周长∏d=直径r=半径

直径=半径×2d=2r半径=直径÷2r= d÷2

(1)周长=直径×π=2×π×半径C=πd=2πr

直径=周长÷πd= C÷π

半径=周长÷(2π)r=C÷(2π)

(2)面积=π×半径×半径s=πr2

9 圆柱体

v:体积h:高s;底面积r:底面半径c:底面周长

(1)侧面积=底面周长×高

①侧面积=πd×高(据直径求侧面积)

②侧面积=2πr×高(据半径求侧面积)

(2)表面积=侧面积 底面积×2

①π d×高 π()2×2(据直径求表面积)

②2πr×高 π r2 ×2(据半径求表面积)

(3)体积=底面积×高V=Sh

底面积=体积÷高S=V÷H

高=体积÷底面积H=V÷S

长方体(正方体、圆柱体)的体积=底面积×高 V=Sh

10 圆锥体

v:体积h:高s;底面积r:底面半径

体积=底面积×高÷3V=SH

底面积=体积×3÷高

高=体积×3÷底面积

长度单位换算

1公里=1千米

1千米=1000米1米=10分米

1分米=10厘米1米=100厘米1厘米=10毫米

面积单位换算

1平方千米=100公顷1公顷=10000平方米

1平方米=100平方分米1平方分米=100平方厘米

1平方厘米=100平方毫米1亩=666.666平方米

体(容)积单位换算

1立方米=1000立方分米1立方分米=1000立方厘米

1立方分米=1升1立方厘米=1毫升

1立方米=1000升

重量单位换算

1吨=1000 千克1千克=1000克

1千克=1公斤(1公斤 = 2市斤)

人民币单位换算

1元=10角1角=10分1元=100分

时间单位换算

1世纪=100年1年=12月

大月(31天)有:1\3\5\7\8\10\12月

小月(30天)的有:4\6\9\11月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时1时=60分1分=60秒1时=3600秒

小学数学定义定理公式(二)

一、算术方面

1.加法交换律:a+b=b+a

两数相加交换加数的位置,和不变。

2.加法结合律:(a+b)+c=a+(b+c)

三个数相加,先把前两个数相加,或先把后两个数相加,再同第

三个数相加,和不变。

3.乘法交换律:a×b=b×a

两数相乘,交换因数的位置,积不变。

4.乘法结合律:(a×b)×c=a×(b×c)

三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:(a±b)×c=a×c±b×c

两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:

(4 2)×5=4×5 2×5,(4-2)×5=4×5-2×5

6、特殊情况:a ÷ b ÷ c = a ÷(b × c) 、 a-b-c= a-(b+c)

7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

8、有余数的除法: 被除数=商×除数 余数

方程、代数与等式

等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

方程式:含有未知数的等式叫方程式。 如:3x =9

分数

分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。(或称这两个数互为倒数)1的倒数是1,0没有倒数。

分数除以整数(0除外),等于分数乘以这个整数的倒数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

真分数:分子比分母小的分数叫做真分数。

假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

带分数:把假分数写成整数和真分数的形式,叫做带分数。

分数的基本性质:分数的分子和分母同时乘以或除以一个相同的数(0除外),分数的大小不变。

比和比例

什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 。

比的基本性质:比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

比例的基本性质:在比例里,两外项之积等于两内项之积。

解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y

=比例尺图上距离=实际距离×比例尺实际距离=图上距离÷比例尺

百分数

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

要学会把小数化成分数和把分数化成小数的化发。

倍数与约数

最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数是有限个。其中最大的一个叫做这几个数的最大公约数。

最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数是无限个。其中最小的一个叫做这几个数的最小公倍数。 互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。

通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。 (约分用最大公约数)

最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1既不是质数,也不是合数。

质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

倍数特征:

2的倍数的特征:个位是0,2,4,6,8。

3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

5的倍数的特征:个位是0,5。

倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。

互质关系的两个数,最大公约数为1,最小公倍数为乘积。

两个数分别除以他们的最大公约数,所得商互质。

两个数的与最小公倍数的乘积等于这两个数的乘积。

两个数的公约数一定是这两个数最大公约数的约数。

1既不是质数也不是合数。

植树问题

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距+1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

和差问题的公式

(和+差)÷2=大数   (和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数   小数×倍数=大数

(或者和-小数=大数)

差倍问题

差÷(倍数-1)=小数   小数×倍数=大数

(或小数+差=大数)

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

数字的计数单位

个 级 万 级 亿 级 兆 级 京 级 垓 级 .........

个,十,百,千, 万,十万,百万,千万, 亿,十亿,百亿,千亿,兆,十兆,百兆,千兆,京,十京,百京,千京,垓,十垓,百垓,千垓 .........

计数单位依次为 个、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿 、兆、十兆、百兆、千兆、京、十京、百京、千京、垓、十垓、百垓、千垓、秭、十秭、百秭、千秭、穰、十穰、百穰、千穰、沟、十沟、百沟、千沟、涧、十涧、百涧、千涧、正、十正、百正、千正、载、十载、百载、千载、极、十极、百极、千极、恒河沙、十恒河沙、百恒河沙、千恒河沙、阿僧祗、十阿僧祗、百阿僧祗、千阿僧祗、那由他、十那由他、百那由他、千那由他、不可思议、十不可思议、百不可思议、千不可思议、 无量、十无量、百无量、千无量、大数、十大数、百大数、千大数 亦可以写作为: 万:10的四次方。 亿:10的八次方。 兆:10的十二次方。 京:10的十六次方。 垓:10的二十次方。 杼:10的二十四次方。 穰:10的二十八次方。 沟:10的三十二次方。 涧:10的三十六次方。 正:10的四十次方。 载:10的四十四次方。 极:10的四十八次方。 恒河沙:10的五十二次方。 阿僧祗:10的五十六次方。 那由他:10的六十次方。 不可思议:10的六十四次方。 无量:10的六十八次方。 大数:10的七十二次方

兆和亿的大小

中国报导社出版的《世界语课本》第十二课"一兆是多少"中,明确地说一兆是 milion-oble miliono=biliono(一百万个百万,即10的12次方)。要数完这一兆,假如按每分钟数200,每小时就是12000,每天288000,每年就是105120000(一亿零五百一十二万),数完一兆,需九千五百多年 这需多少代人接力数数 这个一兆就是一万个亿。它是中国13亿人口数的769倍多。但是,在我们平日工作中也常碰到"兆"。如无线电中就有表频率的"兆赫芝",表电阻的"兆欧",压力有"兆帕",等等。然而现代科技所称的这个"兆"绝不是"万亿",而是"百万",亦即miliono,(即10的6次方)。它是万亿的的百万分之一,换言之,两个"兆"相差一百万倍 假如按上述办法数数,后一个兆则只要约三天半的时间即可数完!

这究竟谁对呢?其实都是对的。这是怎么回事?因为它们源自中国古代不同的计数体系。中国古代亿以上的大数计数方法有三个体系:这是我国东汉时期的《数述记遗》书中所载。

一是上法,为自乘系统: 万万为亿,亿亿为兆,兆兆为京。这种系统,希腊的阿基米德也采用过;10^4=万, 10^8=亿,10^16=兆,10^32=京

二是中法,为万进系统,皆以万递进:万 亿 兆 京 垓 秭 穰 沟(土旁) 涧 正 载┅┅(万万为亿 万亿为兆 万兆为京┅┅) ;10^4=万, 10^8=亿,10^12=兆,10^16=京

三是下法,为十进系统,皆以十递进: 万 亿

刹那、弹指或瞬间到底是多长时间?

《僧祇律》记载:1剎那者为1念,20念为1瞬,20瞬为1弹指,20弹指为1罗预,20罗预为1须臾,1日1夜有30须臾。换算结果:须臾=48分钟,弹指=7.2秒,瞬间=0.36秒,剎那=1念=0.018秒。须臾>弹指>瞬间>刹那=1念。

小学数学重点知识必背公式(数学系列之小学数学一年级数学公式大全)(4)

,

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com

    分享
    投诉
    首页