三角形的三边关系和例题讲解(最值问题之三角形三边关系)
最值问题之三角形三边关系
【巩固练习】
1、问题情境:如图1,P是⊙0外的一点,直线PO分别交⊙0于点A、B,则PA是点P到⊙0上的点的最短距离.
(1)探究:如图2,在⊙0上任取一点C(不为点A、B重合),连接PC、OC.试证明:PA<PC.
(2)直接运用:如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是______________.
(4)综合应用:
①如图5,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H. 若正方形的边长为2,则线段DH长度的最小值是__________.
②如图6,平面直角坐标系中,分别以点A(-2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM PN的最小值等于________________.
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com