生物可降解高分子材料的研究进展(新型可持续性高分子材料的催化合成研究获进展)
合成高分子材料是社会发展中不可或缺的物质材料。然而,当前的大宗高分子树脂过度依赖石化资源且难降解回收,造成了资源浪费及过量碳排放、白色污染等环境问题,阻碍了塑料等高分子材料的可持续性发展。发展新型的可持续性高分子材料以替代传统的大宗高分子树脂具有重要的科学意义和实际应用价值,是当前高分子学科的热点前沿领域,但目前报道的可持续性高分子存在着单体价格昂贵、不能大量工业生产、其物理性能无法与大宗高分子树脂相抗衡的问题,其生产与应用严重受限。
中国科学院上海有机化学研究所金属有机化学国家重点实验室研究员洪缪课题组致力于新型可持续高分子材料的催化合成(Trends Chem. 2019, 1, 148;Angew. Chem. Int. Ed. 2020, 59, 2664)。近日,该研究团队在基于非张力五元环硫羰代内酯制备可持续性高分子材料的研究中取得新进展。该工作以五元环内酯为原料,尽管这是一类价廉量大的可再生化合物,然而“非张力”环结构导致了它们的环张力小、开环聚合缺乏驱动力,过去常被称为“不能聚合”的单体。科研人员通过单体设计,一步硫化反应将硫原子引入五元环内酯中,以接近定量的收率合成新型五元环硫羰代内酯单体,并利用其开环过程选择性的发生alkyl-oxygen键断裂和S/O异构化的协同反应,而不是常见的acyl-oxygen键断裂,构建了一种不可逆开环聚合(IROP)的新策略。与传统的开环聚合(ROP)的本质差别在于,该策略以异构化反应为热力学驱动力,而不是环张力,从而促使这类非张力环单体在室温甚至是高温下发生聚合,为工业化合成基于五元环内酯的可持续性高分子提供了可能。
研究发现,磷腈强碱tBu-P4/Ph2CHOH催化体系能有效抑制二聚和回咬副反应,可高活性地催化γ-硫羰代丁内酯及其甲基衍生物在工业温度下(80–100 °C)的IROP,即使是在单体大比例过量的条件下(1600当量),4-6小时内可完成单体的定量转化,得到数均分子量高达251.0 kg/mol的聚硫酯。理论计算研究表明,催化体系中的Ph2CHOH组分在聚合过程中起着独特的质子转移引发和抑制回咬副反应的双重作用,保证了聚合的可控性;此外,alkyl-oxygen键断裂和S/O异构化的协同反应会生成热力学稳定的产物,为聚合反应提供热力学驱动力。物理性能测试表明,该工作合成的聚(γ-硫代丁内酯)是具有高熔融温度(~100 °C)的结晶性塑料,断裂伸长率和拉伸强度分别为412.5%和30 MPa,其热性能与机械性能可与商业化的低密度聚乙烯相媲美,并能在外界刺激触发下发生高效可控的降解,是一类新型的高性能可持续性含硫高分子材料。
该工作发展了一种不可逆开环聚合的新策略,以S/O异构化反应为开环聚合的热力学驱动力,而非传统的环张力,打破了非张力环单体无法常温/高温聚合的局限,为“挑战性”五元环内酯转化成性能各异的可持续性高分子材料提供了新途径。相关研究成果以Towards High-performance Sustainable Polymers via Isomerization-driven Irreversible Ring-opening Polymerization of Five-membered Thionolactones为题,发表在Nature Chemistry上。研究工作得到国家自然科学基金委员会、上海市科学技术委员会、中科院王宽诚率先人才计划(卢嘉锡国际团队)的资助。
异构化驱动的不可逆开环聚合制备新型高性能可持续性含硫高分子材料
来源:中国科学院上海有机化学研究所
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com