js绘制平滑路径(如何利用Javascript生成平滑曲线详解)
类别:编程学习 浏览量:162
时间:2021-10-08 00:14:58 js绘制平滑路径
如何利用Javascript生成平滑曲线详解目录
- 前言
- 贝塞尔曲线简介
- 二次贝塞尔曲线
- 三次贝塞尔曲线
- 贝塞尔曲线计算函数
- 拟合算法
- 附录:Vector2D相关的代码
- 总结
平滑曲线生成是一个很实用的技术
很多时候,我们都需要通过绘制一些折线,然后让计算机平滑的连接起来,
先来看下最终效果(红色为我们输入的直线,蓝色为拟合过后的曲线) 首尾可以特殊处理让图形看起来更好:)
实现思路是利用贝塞尔曲线进行拟合
贝塞尔曲线简介贝塞尔曲线(英语:Bézier curve)是计算机图形学中相当重要的参数曲线。
二次贝塞尔曲线
二次方贝塞尔曲线的路径由给定点P0、P1、P2的函数B(t)追踪:
三次贝塞尔曲线
对于三次曲线,可由线性贝塞尔曲线描述的中介点Q0、Q1、Q2,和由二次曲线描述的点R0、R1所建构
贝塞尔曲线计算函数根据上面的公式我们可有得到计算函数
二阶
/** * * * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} t * @return {*} * @memberof Path */ bezier2P(p0: number, p1: number, p2: number, t: number) { const P0 = p0 * Math.pow(1 - t, 2); const P1 = p1 * 2 * t * (1 - t); const P2 = p2 * t * t; return P0 + P1 + P2; } /** * * * @param {Point} p0 * @param {Point} p1 * @param {Point} p2 * @param {number} num * @param {number} tick * @return {*} {Point} * @memberof Path */ getBezierNowPoint2P( p0: Point, p1: Point, p2: Point, num: number, tick: number, ): Point { return { x: this.bezier2P(p0.x, p1.x, p2.x, num * tick), y: this.bezier2P(p0.y, p1.y, p2.y, num * tick), }; } /** * 生成二次方贝塞尔曲线顶点数据 * * @param {Point} p0 * @param {Point} p1 * @param {Point} p2 * @param {number} [num=100] * @param {number} [tick=1] * @return {*} * @memberof Path */ create2PBezier( p0: Point, p1: Point, p2: Point, num: number = 100, tick: number = 1, ) { const t = tick / (num - 1); const points = []; for (let i = 0; i < num; i++) { const point = this.getBezierNowPoint2P(p0, p1, p2, i, t); points.push({x: point.x, y: point.y}); } return points; }
三阶
/** * 三次方塞尔曲线公式 * * @param {number} p0 * @param {number} p1 * @param {number} p2 * @param {number} p3 * @param {number} t * @return {*} * @memberof Path */ bezier3P(p0: number, p1: number, p2: number, p3: number, t: number) { const P0 = p0 * Math.pow(1 - t, 3); const P1 = 3 * p1 * t * Math.pow(1 - t, 2); const P2 = 3 * p2 * Math.pow(t, 2) * (1 - t); const P3 = p3 * Math.pow(t, 3); return P0 + P1 + P2 + P3; } /** * 获取坐标 * * @param {Point} p0 * @param {Point} p1 * @param {Point} p2 * @param {Point} p3 * @param {number} num * @param {number} tick * @return {*} * @memberof Path */ getBezierNowPoint3P( p0: Point, p1: Point, p2: Point, p3: Point, num: number, tick: number, ) { return { x: this.bezier3P(p0.x, p1.x, p2.x, p3.x, num * tick), y: this.bezier3P(p0.y, p1.y, p2.y, p3.y, num * tick), }; } /** * 生成三次方贝塞尔曲线顶点数据 * * @param {Point} p0 起始点 { x : number, y : number} * @param {Point} p1 控制点1 { x : number, y : number} * @param {Point} p2 控制点2 { x : number, y : number} * @param {Point} p3 终止点 { x : number, y : number} * @param {number} [num=100] * @param {number} [tick=1] * @return {Point []} * @memberof Path */ create3PBezier( p0: Point, p1: Point, p2: Point, p3: Point, num: number = 100, tick: number = 1, ) { const pointMum = num; const _tick = tick; const t = _tick / (pointMum - 1); const points = []; for (let i = 0; i < pointMum; i++) { const point = this.getBezierNowPoint3P(p0, p1, p2, p3, i, t); points.push({x: point.x, y: point.y}); } return points; }
问题在于如何得到控制点,我们以比较简单的方法
取 p1-pt-p2的角平分线 c1c2垂直于该条角平分线 c2为p2的投影点取短边作为c1-pt c2-pt的长度对该长度进行缩放 这个长度可以大概理解为曲线的弯曲程度
ab线段 这里简单处理 只使用了二阶的曲线生成 -> 🌈 这里可以按照个人想法处理
bc线段使用abc计算出来的控制点c2和bcd计算出来的控制点c3 以此类推
/** * 生成平滑曲线所需的控制点 * * @param {Vector2D} p1 * @param {Vector2D} pt * @param {Vector2D} p2 * @param {number} [ratio=0.3] * @return {*} * @memberof Path */ createSmoothLineControlPoint( p1: Vector2D, pt: Vector2D, p2: Vector2D, ratio: number = 0.3, ) { const vec1T: Vector2D = vector2dMinus(p1, pt); const vecT2: Vector2D = vector2dMinus(p1, pt); const len1: number = vec1T.length; const len2: number = vecT2.length; const v: number = len1 / len2; let delta; if (v > 1) { delta = vector2dMinus( p1, vector2dPlus(pt, vector2dMinus(p2, pt).scale(1 / v)), ); } else { delta = vector2dMinus( vector2dPlus(pt, vector2dMinus(p1, pt).scale(v)), p2, ); } delta = delta.scale(ratio); const control1: Point = { x: vector2dPlus(pt, delta).x, y: vector2dPlus(pt, delta).y, }; const control2: Point = { x: vector2dMinus(pt, delta).x, y: vector2dMinus(pt, delta).y, }; return {control1, control2}; } /** * 平滑曲线生成 * * @param {Point []} points * @param {number} ratio * @return {*} * @memberof Path */ createSmoothLine(points: Point[], ratio: number = 0.3) { const len = points.length; let resultPoints = []; const controlPoints = []; if (len < 3) return; for (let i = 0; i < len - 2; i++) { const {control1, control2} = this.createSmoothLineControlPoint( new Vector2D(points[i].x, points[i].y), new Vector2D(points[i + 1].x, points[i + 1].y), new Vector2D(points[i + 2].x, points[i + 2].y), ratio, ); controlPoints.push(control1); controlPoints.push(control2); let points1; let points2; // 首端控制点只用一个 if (i === 0) { points1 = this.create2PBezier(points[i], control1, points[i + 1], 50); } else { console.log(controlPoints); points1 = this.create3PBezier( points[i], controlPoints[2 * i - 1], control1, points[i + 1], 50, ); } // 尾端部分 if (i + 2 === len - 1) { points2 = this.create2PBezier( points[i + 1], control2, points[i + 2], 50, ); } if (i + 2 === len - 1) { resultPoints = [...resultPoints, ...points1, ...points2]; } else { resultPoints = [...resultPoints, ...points1]; } } return resultPoints; }
案例代码
const input = [ { x: 0, y: 0 }, { x: 150, y: 150 }, { x: 300, y: 0 }, { x: 400, y: 150 }, { x: 500, y: 0 }, { x: 650, y: 150 }, ] const s = path.createSmoothLine(input); let ctx = document.getElementById('cv').getContext('2d'); ctx.strokeStyle = 'blue'; ctx.beginPath(); ctx.moveTo(0, 0); for (let i = 0; i < s.length; i++) { ctx.lineTo(s[i].x, s[i].y); } ctx.stroke(); ctx.beginPath(); ctx.moveTo(0, 0); for (let i = 0; i < input.length; i++) { ctx.lineTo(input[i].x, input[i].y); } ctx.strokeStyle = 'red'; ctx.stroke(); document.getElementById('btn').addEventListener('click', () => { let app = document.getElementById('app'); let index = 0; let move = () => { if (index < s.length) { app.style.left = s[index].x - 10 + 'px'; app.style.top = s[index].y - 10 + 'px'; index++; requestAnimationFrame(move) } } move() })
/** * * * @class Vector2D * @extends {Array} */ class Vector2D extends Array { /** * Creates an instance of Vector2D. * @param {number} [x=1] * @param {number} [y=0] * @memberof Vector2D * */ constructor(x: number = 1, y: number = 0) { super(); this.x = x; this.y = y; } /** * * @param {number} v * @memberof Vector2D */ set x(v) { this[0] = v; } /** * * @param {number} v * @memberof Vector2D */ set y(v) { this[1] = v; } /** * * * @readonly * @memberof Vector2D */ get x() { return this[0]; } /** * * * @readonly * @memberof Vector2D */ get y() { return this[1]; } /** * * * @readonly * @memberof Vector2D */ get length() { return Math.hypot(this.x, this.y); } /** * * * @readonly * @memberof Vector2D */ get dir() { return Math.atan2(this.y, this.x); } /** * * * @return {*} * @memberof Vector2D */ copy() { return new Vector2D(this.x, this.y); } /** * * * @param {*} v * @return {*} * @memberof Vector2D */ add(v) { this.x += v.x; this.y += v.y; return this; } /** * * * @param {*} v * @return {*} * @memberof Vector2D */ sub(v) { this.x -= v.x; this.y -= v.y; return this; } /** * * * @param {*} a * @return {Vector2D} * @memberof Vector2D */ scale(a) { this.x *= a; this.y *= a; return this; } /** * * * @param {*} rad * @return {*} * @memberof Vector2D */ rotate(rad) { const c = Math.cos(rad); const s = Math.sin(rad); const [x, y] = this; this.x = x * c + y * -s; this.y = x * s + y * c; return this; } /** * * * @param {*} v * @return {*} * @memberof Vector2D */ cross(v) { return this.x * v.y - v.x * this.y; } /** * * * @param {*} v * @return {*} * @memberof Vector2D */ dot(v) { return this.x * v.x + v.y * this.y; } /** * 归一 * * @return {*} * @memberof Vector2D */ normalize() { return this.scale(1 / this.length); } } /** * 向量的加法 * * @param {*} vec1 * @param {*} vec2 * @return {Vector2D} */ function vector2dPlus(vec1, vec2) { return new Vector2D(vec1.x + vec2.x, vec1.y + vec2.y); } /** * 向量的减法 * * @param {*} vec1 * @param {*} vec2 * @return {Vector2D} */ function vector2dMinus(vec1, vec2) { return new Vector2D(vec1.x - vec2.x, vec1.y - vec2.y); } export {Vector2D, vector2dPlus, vector2dMinus};
到此这篇关于如何利用Javascript生成平滑曲线的文章就介绍到这了,更多相关JS生成平滑曲线内容请搜索开心学习网以前的文章或继续浏览下面的相关文章希望大家以后多多支持开心学习网!
您可能感兴趣
- vue多个对象实现双向数据绑定(利用js实现Vue2.0中数据的双向绑定功能)
- js字符串常用函数
- sqlserver常见函数(SQL Server之JSON 函数详解)
- js网页截图(JS如何实现页面截屏功能实例代码)
- jspromise原理(JavaScript使用promise处理多重复请求)
- js项目经验(JS实现扫雷项目总结)
- ExtJs中XTemplate使用
- nodejs的广播机制(node.js如何自定义实现一个EventEmitter)
- js array的所有方法(js 数组 find,some,filter,reduce区别详解)
- js回调函数
- js弹出框代码(js实现自动锁屏功能)
- js实现自动轮播(原生js封装无缝轮播功能)
- js中this的用法
- js获取微信版本号
- sqlserver技术文档(sql server2016里面的json功能浅析)
- js解除网页屏蔽(js检测标题与描述中的关键词发现就替换或跳转到别的页面)
- 44岁夏雨演谋女郎爸,大其24岁却看不出,互动不怕袁泉吃醋(44岁夏雨演谋女郎爸)
- 全椒人,你还记得吗 那年,那人,那网,那些我们的青春记忆(全椒人你还记得吗)
- 全椒人在苏州10周年联谊会在苏州举办(全椒人在苏州10周年联谊会在苏州举办)
- 这个全椒人被通报表彰,看看你认识吗(这个全椒人被通报表彰)
- 全椒人,38年集体回忆 1980-2018 ,看完不要哭(全椒人38年集体回忆)
- 董元奔吟咏历代文人 1012新旧均可 全椒人张璪 1022 -1093(董元奔吟咏历代文人)
热门推荐
- js图片水印库(js给图片打马赛克的方法示例)
- jupyternotebook搭建和使用(Jupyter Notebook运行JavaScript的方法)
- css3中基本选择符(CSS3 clip-path 用法介绍详解)
- nginx的15种优化方案(Nginx开启Brotli压缩算法实现过程详解)
- tracert命令图解(tracert命令怎么用?tracert命令使用详解)
- mysql的uuid说明(MySQL GTID全面总结)
- nginx配置静态资源路径(Mac环境Nginx配置和访问本地静态资源的实现)
- js的三种使用方法(JS带你深入领略Proxy的世界)
- C#匿名类
- django怎么创建模板文件(django模板加载静态文件的方法步骤)