NoSQL的优缺点
NoSQL的优缺点
NoSQL的优缺点NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。
大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。
灵活的数据模型
NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。
高可用
NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。
三、NoSQL数据库还存在着很多的不足,常见主要有下面这几个
1. 不提供对SQL的支持:如果不支持SQL这样的工业标准,将会对用户产生一定的学习和应用迁移成本;
2. 支持的特性不够丰富:现有产品所提供的功能都比较有限,大多数NoSQL数据库都不支持事务,也不像MS SQL Server和Oracle那样能提供各种附加功能,比如BI和报表等;
3. 现有产品的不够成熟:大多数产品都还处于初创期,和关系型数据库几十年的完善不可同日而语;
四、NoSQL的分类
类型 | 部分代表 | 特点 |
列存储 |
Hbase Cassandra Hypertable |
顾名思义,是按列存储数据的。最大的特点是方便存储结构化和半结构化数据,方便做数据压缩,对针对某一列或者某几列的查询有非常大的IO优势。 |
文档存储 |
MongoDB CouchDB |
文档存储一般用类似json的格式存储,存储的内容是文档型的。这样也就有有机会对某些字段建立索引,实现关系数据库的某些功能。 |
key-value存储 |
Tokyo Cabinet / Tyrant Berkeley DB MemcacheDB Redis |
可以通过key快速查询到其value。一般来说,存储不管value的格式,照单全收。(Redis包含了其他功能) |
图存储 |
Neo4J FlockDB |
图形关系的最佳存储。使用传统关系数据库来解决的话性能低下,而且设计使用不方便。 |
对象存储 |
db4o Versant |
通过类似面向对象语言的语法操作数据库,通过对象的方式存取数据。 |
xml数据库 | Berkeley DB XML | 高效的存储XML数据,并支持XML的内部查询语法,比如XQuery,Xpath。 |
五、Cassandra、 Mongodb、CouchDB、Redis、Riak、 Membase、Neo4j和HBase的介绍
1. CouchDB
- 所用语言: Erlang
- 特点:DB一致性,易于使用
- 使用许可: Apache
- 协议: HTTP/REST
- 双向数据复制,
- 持续进行或临时处理,
- 处理时带冲突检查,
- 因此,采用的是master-master复制(见编注2)
- MVCC – 写操作不阻塞读操作
- 可保存文件之前的版本
- Crash-only(可靠的)设计
- 需要不时地进行数据压缩
- 视图:嵌入式 映射/减少
- 格式化视图:列表显示
- 支持进行服务器端文档验证
- 支持认证
- 根据变化实时更新
- 支持附件处理
- 因此, CouchApps(独立的 js应用程序)
- 需要 jQuery程序库
最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。
例如: CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。
2. Redis
- 所用语言:C/C++
- 特点:运行异常快
- 使用许可: BSD
- 协议:类 Telnet
- 有硬盘存储支持的内存数据库,
- 但自2.0版本以后可以将数据交换到硬盘(注意, 2.4以后版本不支持该特性!)
- Master-slave复制(见编注3)
- 虽然采用简单数据或以键值索引的哈希表,但也支持复杂操作,例如 ZREVRANGEBYSCORE。
- INCR & co (适合计算极限值或统计数据)
- 支持 sets(同时也支持 union/diff/inter)
- 支持列表(同时也支持队列;阻塞式 pop操作)
- 支持哈希表(带有多个域的对象)
- 支持排序 sets(高得分表,适用于范围查询)
- Redis支持事务
- 支持将数据设置成过期数据(类似快速缓冲区设计)
- Pub/Sub允许用户实现消息机制
最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。
例如:股票价格、数据分析、实时数据搜集、实时通讯。
3. MongoDB
- 所用语言:C++
- 特点:保留了SQL一些友好的特性(查询,索引)。
- 使用许可: AGPL(发起者: Apache)
- 协议: Custom, binary( BSON)
- Master/slave复制(支持自动错误恢复,使用 sets 复制)
- 内建分片机制
- 支持 javascript表达式查询
- 可在服务器端执行任意的 javascript函数
- update-in-place支持比CouchDB更好
- 在数据存储时采用内存到文件映射
- 对性能的关注超过对功能的要求
- 建议最好打开日志功能(参数 –journal)
- 在32位操作系统上,数据库大小限制在约2.5Gb
- 空数据库大约占 192Mb
- 采用 GridFS存储大数据或元数据(不是真正的文件系统)
最佳应用场景:适用于需要动态查询支持;需要使用索引而不是 map/reduce功能;需要对大数据库有性能要求;需要使用 CouchDB但因为数据改变太频繁而占满内存的应用程序。
例如:你本打算采用 MySQL或 PostgreSQL,但因为它们本身自带的预定义栏让你望而却步。
4. Riak
- 所用语言:Erlang和C,以及一些Javascript
- 特点:具备容错能力
- 使用许可: Apache
- 协议: HTTP/REST或者 custom binary
- 可调节的分发及复制(N, R, W)
- 用 JavaScript or Erlang在操作前或操作后进行验证和安全支持。
- 使用JavaScript或Erlang进行 Map/reduce
- 连接及连接遍历:可作为图形数据库使用
- 索引:输入元数据进行搜索(1.0版本即将支持)
- 大数据对象支持( Luwak)
- 提供“开源”和“企业”两个版本
- 全文本搜索,索引,通过 Riak搜索服务器查询( beta版)
- 支持Masterless多站点复制及商业许可的 SNMP监控
最佳应用场景:适用于想使用类似 Cassandra(类似Dynamo)数据库但无法处理 bloat及复杂性的情况。适用于你打算做多站点复制,但又需要对单个站点的扩展性,可用性及出错处理有要求的情况。
例如:销售数据搜集,工厂控制系统;对宕机时间有严格要求;可以作为易于更新的 web服务器使用。
5. Membase
- 所用语言: Erlang和C
- 特点:兼容 Memcache,但同时兼具持久化和支持集群
- 使用许可: Apache 2.0
- 协议:分布式缓存及扩展
- 非常快速(200k+/秒),通过键值索引数据
- 可持久化存储到硬盘
- 所有节点都是唯一的( master-master复制)
- 在内存中同样支持类似分布式缓存的缓存单元
- 写数据时通过去除重复数据来减少 IO
- 提供非常好的集群管理 web界面
- 更新软件时软无需停止数据库服务
- 支持连接池和多路复用的连接代理
最佳应用场景:适用于需要低延迟数据访问,高并发支持以及高可用性的应用程序
例如:低延迟数据访问比如以广告为目标的应用,高并发的 web 应用比如网络游戏(例如 Zynga)
6. Neo4j
- 所用语言: Java
- 特点:基于关系的图形数据库
- 使用许可: GPL,其中一些特性使用 AGPL/商业许可
- 协议: HTTP/REST(或嵌入在 Java中)
- 可独立使用或嵌入到 Java应用程序
- 图形的节点和边都可以带有元数据
- 很好的自带web管理功能
- 使用多种算法支持路径搜索
- 使用键值和关系进行索引
- 为读操作进行优化
- 支持事务(用 Java api)
- 使用 Gremlin图形遍历语言
- 支持 Groovy脚本
- 支持在线备份,高级监控及高可靠性支持使用 AGPL/商业许可
最佳应用场景:适用于图形一类数据。这是 Neo4j与其他nosql数据库的最显著区别
例如:社会关系,公共交通网络,地图及网络拓谱
7. Cassandra
- 所用语言: Java
- 特点:对大型表格和 Dynamo支持得最好
- 使用许可: Apache
- 协议: Custom, binary (节约型)
- 可调节的分发及复制(N, R, W)
- 支持以某个范围的键值通过列查询
- 类似大表格的功能:列,某个特性的列集合
- 写操作比读操作更快
- 基于 Apache分布式平台尽可能地 Map/reduce
- 我承认对 Cassandra有偏见,一部分是因为它本身的臃肿和复杂性,也因为 Java的问题(配置,出现异常,等等)
最佳应用场景:当使用写操作多过读操作(记录日志)如果每个系统组建都必须用 Java编写(没有人因为选用 Apache的软件被解雇)
例如:银行业,金融业(虽然对于金融交易不是必须的,但这些产业对数据库的要求会比它们更大)写比读更快,所以一个自然的特性就是实时数据分析
8. HBase
(配合 ghshephard使用)
- 所用语言: Java
- 特点:支持数十亿行X上百万列
- 使用许可: Apache
- 协议:HTTP/REST
- 在 BigTable之后建模
- 采用分布式架构 Map/reduce
- 对实时查询进行优化
- 高性能 Thrift网关
- 通过在server端扫描及过滤实现对查询操作预判
- 支持 XML, Protobuf, 和binary的HTTP
- Cascading, hive, and pig source and sink modules
- 基于 Jruby( JIRB)的shell
- 对配置改变和较小的升级都会重新回滚
- 不会出现单点故障
- 堪比MySQL的随机访问性能
最佳应用场景:适用于偏好BigTable:)并且需要对大数据进行随机、实时访问的场合。
热门推荐
- 微信小程序开发完整操作流程(微信小程序开发之组件设计规范)
- django中的limit用法(如何在Django中添加没有微秒的 DateTimeField 属性详解)
- dedecms SQL语句教程(dedecms各种数字统计SQL语句 包括评论条数,总文档数等等[附修修改版本])
- php标签怎么写(php 使用mpdf实现指定字段配置字体样式的方法)
- jenkins和docker自动化(Jenkins+Docker持续集成的实现)
- ASP.NET中获取匿名对象的属性值
- dedecms更新后设置不显示(dedecms中tags页面显示错位的解决方法)
- mysql未使用索引的查询(如何在mysql进行查询缓存及失败的解决方法)
- 云服务器哪个公司适合做(企业云服务器适用企业有哪些?)
- python 爬虫图形验证码(Python爬虫实现验证码登录代码实例)