基本三角函数及其图像(变化莫测的三角函数图像)
(1)能画出y=sin x,y =cos x,y = tan x的图象,了解三角函数的周期性.
(4)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。
知识点详解一、正弦函数y=sinx,余弦函数y=cosx,正切函数y=tanx的图象与性质
考向分析
考向一 三角函数的图象变换
函数图象的平移变换解题策略
(1)对函数y=sin x,y=Asin(ωx+φ)或y=Acos(ωx+φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x变为x±|φ|,而不是ωx变为ωx±|φ|.
(2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.
【名师点睛】
(1)进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身;要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;
(2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x而言的,如果x的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.
考向二 确定三角函数的解析式
结合图象及性质求解析式y=Asin(ωx+φ)+B(A>0,ω>0)的方法
考向三 三角函数的性质
1.三角函数定义域的求法
求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.
2.求解三角函数的值域(最值)常见到以下几种类型的题目及求解方法
(1)形如y=asinx+bcosx+k的三角函数化为y=Asin(ωx+φ)+k的形式,再求最值(值域);
(2)形如y=asin2x+bsinx+k的三角函数,可先设sinx=t,化为关于t的二次函数求值域(最值);
(3)形如y=asinxcosx+b(sinx±cosx)+c的三角函数,可先设t=sinx±cosx,化为关于t的二次函数求值域(最值).
3.三角函数单调性问题的常见类型及解题策略
(1)已知三角函数解析式求单调区间.
①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;
②求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中,ω>0)的单调区间时,要视“ωx+φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.
(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.
(3)利用三角函数的单调性求值域(或最值).形如y=Asin(ωx+φ)+b或可化为y=Asin(ωx+φ)+b的三角函数的值域(或最值)问题常利用三角函数的单调性解决.
4.三角函数的奇偶性、周期性、对称性的处理方法
考向四 函数y=Asin(ωx+φ)的性质与其他知识的综合应用
与三角恒等变换、平面向量、解三角形相结合的问题
常先通过三角恒等变换、平面向量的有关知识化简函数解析式为y=Asin(ωx+φ)+B的形式,再结合正弦函数y=sinx的性质研究其相关性质,若涉及解三角形,则结合解三角形的相关知识求解.
,免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。文章投诉邮箱:anhduc.ph@yahoo.com