python实现数据的预测(Python基于scipy实现信号滤波功能)
python实现数据的预测
Python基于scipy实现信号滤波功能
1.背景介绍
在深度学习中,有时会使用Matlab进行滤波处理,再将处理过的数据送入神经网络中。这样是一般的处理方法,但是处理起来却有些繁琐,并且有时系统难以运行Matlab。Python作为一种十分强大的语言,是支持信号滤波滤波处理的。
本文将以实战的形式基于scipy模块使用Python实现简单滤波处理,包括内容有1.低通滤波,2.高通滤波,3.带通滤波,4.带阻滤波器。具体的含义大家可以查阅大学课程,信号与系统。简单的理解就是低通滤波指的是去除高于某一阈值频率的信号;高通滤波去除低于某一频率的信号;带通滤波指的是类似低通高通的结合保留中间频率信号;带阻滤波也是低通高通的结合只是过滤掉的是中间部分。上面所说的内容会在实战部分加以介绍,可以对比理解一下。
如何实现的呢?我的理解,是通过时域转换为频域,在频域信号中去除相应频域信号,最后在逆转换还原为时域型号。具体的内容还是要查阅大学课程,信号与系统。自己学的很一般就不班门弄斧了。
有什么作用呢?My Opinions,可以消除一些干扰信号,以低通滤波为例,例如我们如果只是统计脉搏信号波形,应该在1Hz左右,却发现波形信号上有很多噪音,这些噪音都是成百上千Hz的,这些对于脉搏信号波形就属于无用的噪音,我们就可以通过低通滤波器将超出某一阈值的信号过滤掉,此时得到的波形就会比较平滑了。
2.实战演练
首先我们使用到了scipy模块,可以通过下述命令进行安装:(我使用的Python==3.6)
pip install scipy
1).低通滤波
这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除400hz以上频率成分,即截至频率为400hz,则wn=2*400/1000=0.8。Wn=0.8
|
from scipy import signal b, a = signal.butter( 8 , 0.8 , 'lowpass' ) #配置滤波器 8 表示滤波器的阶数 filtedData = signal.filtfilt(b, a, data) #data为要过滤的信号 |
2).高通滤波
这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除100hz以下频率成分,即截至频率为100hz,则wn=2*100/1000=0.2。Wn=0.2
|
from scipy import signal b, a = signal.butter( 8 , 0.2 , 'highpass' ) #配置滤波器 8 表示滤波器的阶数 filtedData = signal.filtfilt(b, a, data) #data为要过滤的信号 |
3).带通滤波
这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除100hz以下,400hz以上频率成分,即截至频率为100,400hz,则wn1=2*100/1000=0.2,Wn1=0.2; wn2=2*400/1000=0.8,Wn2=0.8。Wn=[0.02,0.8]
|
from scipy import signal b, a = signal.butter( 8 , [ 0.2 , 0.8 ], 'bandpass' ) #配置滤波器 8 表示滤波器的阶数 filtedData = signal.filtfilt(b, a, data) #data为要过滤的信号 |
4).带阻滤波
这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除100hz以上,400hz以下频率成分,即截至频率为100,400hz,则wn1=2*100/1000=0.2,Wn1=0.2; wn2=2*400/1000=0.8,Wn2=0.8。Wn=[0.02,0.8],和带通相似,但是带通是保留中间,而带阻是去除。
|
from scipy import signal b, a = signal.butter( 8 , [ 0.2 , 0.8 ], 'bandstop' ) #配置滤波器 8 表示滤波器的阶数 filtedData = signal.filtfilt(b, a, data) #data为要过滤的信号 |
3.函数介绍
1.函数的介绍
(1).滤波函数
scipy.signal.filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None)
输入参数:
b: 滤波器的分子系数向量
a: 滤波器的分母系数向量
x: 要过滤的数据数组。(array型)
axis: 指定要过滤的数据数组x的轴
padtype: 必须是“奇数”、“偶数”、“常数”或“无”。这决定了用于过滤器应用的填充信号的扩展类型。{‘odd', ‘even', ‘constant', None}
padlen:在应用滤波器之前在轴两端延伸X的元素数目。此值必须小于要滤波元素个数- 1。(int型或None)
method:确定处理信号边缘的方法。当method为“pad”时,填充信号;填充类型padtype和padlen决定,irlen被忽略。当method为“gust”时,使用古斯塔夫森方法,而忽略padtype和padlen。{“pad” ,“gust”}
irlen:当method为“gust”时,irlen指定滤波器的脉冲响应的长度。如果irlen是None,则脉冲响应的任何部分都被忽略。对于长信号,指定irlen可以显著改善滤波器的性能。(int型或None)
输出参数:
y:滤波后的数据数组
(2).滤波器构造函数(仅介绍Butterworth滤波器)
scipy.signal.butter(N, Wn, btype='low', analog=False, output='ba')
输入参数:
N:滤波器的阶数
Wn:归一化截止频率。计算公式Wn=2*截止频率/采样频率。(注意:根据采样定理,采样频率要大于两倍的信号本身最大的频率,才能还原信号。截止频率一定小于信号本身最大的频率,所以Wn一定在0和1之间)。当构造带通滤波器或者带阻滤波器时,Wn为长度为2的列表。
btype : 滤波器类型{‘lowpass', ‘highpass', ‘bandpass', ‘bandstop'},
output : 输出类型{‘ba', ‘zpk', ‘sos'},
输出参数:
b,a: IIR滤波器的分子(b)和分母(a)多项式系数向量。output='ba'
z,p,k: IIR滤波器传递函数的零点、极点和系统增益. output= 'zpk'
sos: IIR滤波器的二阶截面表示。output= 'sos'
总结
以上所述是小编给大家介绍的Python基于scipy实现信号滤波功能,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!
原文链接:https://www.cnblogs.com/xiaosongshine/p/10831931.html
- python线程安全队列(Python 限制线程的最大数量的方法Semaphore)
- python3 代码解读(Python3列表内置方法大全及示例代码小结)
- python 队列与列表(Python实现的栈、队列、文件目录遍历操作示例)
- python画图教程(详解用Python练习画个美队盾牌)
- python如何将运行结果存入txt中(详解python读取和输出到txt)
- python中test函数用法(Python TestCase中的断言方法介绍)
- python迭代列表解析(Python可迭代对象操作示例)
- python3和python2 兼容(Python2和Python3的共存和切换使用)
- python实用的游戏小代码(python3实现小球转动抽奖小游戏)
- python中对象方法和顶级方法(Python3.5面向对象程序设计之类的继承和多态详解)
- python数据表教程(详解Python sys.argv使用方法)
- pythoncsv格式转换(Python把对应格式的csv文件转换成字典类型存储脚本的方法)
- python批量自动化访问网站(python 自动批量打开网页的示例)
- python编写计算机病毒教程(Python告诉你木马程序的键盘记录原理)
- python获取股票每天k线(使用PyQtGraph绘制精美的股票行情K线图的示例代码)
- python3标准库资源(Python3标准库总结)
- 袁冰妍轧戏 拍《琉璃》的同时还在拍《将夜》,难怪被骂演技差(拍琉璃的同时还在拍将夜)
- 刚红就耍大牌,《琉璃》角色滤镜碎一地,心疼工作人员(琉璃角色滤镜碎一地)
- 袁冰妍郑业成这对可以处,有脸红情话他们是真的敢说(袁冰妍郑业成这对可以处)
- 《祝卿好》台词又土又甜,就喜欢这么直接的恋爱(祝卿好台词又土又甜)
- 大女主 汤唯垂青电视圈,搭档朱亚文出演《大明皇妃孙若微传》(汤唯垂青电视圈)
- 红色代表什么(红色代表什么情感和含义)
热门推荐
- phpredis怎么测试成功(PHP+redis实现的限制抢购防止商品超发功能详解)
- dockerpull的镜像位置(解决docker pull镜像报错的问题)
- xampp安装后启动apache弹出对话框(XAMPP下使用顶级域名绑定虚拟主机的配置方法和示例)
- python中的数据类型和数字类型(Python数据类型之Number数字操作实例详解)
- 常用SQL查询语句
- wdcp命令工具(简单3条命令彻底清除WDCP占用空间)
- mysql的count知识(MySQL中MTR的概念)
- python 二维数组怎么取第二列(python实现二维数组的对角线遍历)
- php符串使用教程(php使用scandir函数扫描指定目录下所有文件示例)
- php7 入门(php7新特性的理解和比较总结)
排行榜
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9